INO
CNR
vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  
 
 

Progress towards an unassisted element identification from Laser Induced Breakdown Spectra with automatic ranking techniques inspired by text retrieval

  Articoli su Riviste JCR/ISI  (anno 2010)

Autori:  Amato G., Cristoforetti G., Legnaioli S., Lorenzetti G., Palleschi V., Sorrentino F., Tognoni E

Affiliazione Autori:  ISTI-CNR, Area della Ricerca, Via Moruzzi 1, 56124, Pisa, Italy; IPCF-CNR, Area della Ricerca, Via Moruzzi 1, 56124, Pisa, Italy; Dipartimento di Fisica e astronomia, Università di Firenze, Polo Scientifico, via Sansone 1, 50019 Sesto Fiorentino (FI), Italy; Istituto di Cibernetica CNR, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; Marwan Technology, c/o Dipartimento di Fisica “E. Fermi”, Largo Pontecorvo 3, 56127 Pisa, Italy; INO-CNR, Area della Ricerca, Via Moruzzi 1, 56124 Pisa, Italy

Riassunto:  In this communication, we will illustrate an algorithm for automatic element identification in LIBS spectra which takes inspiration from the vector space model applied to text retrieval techniques. The vector space model prescribes that text documents and text queries are represented as vectors of weighted terms (words). Document ranking, with respect to relevance to a query, is obtained by comparing the vectors representing the documents with the vector representing the query. In our case, we represent elements and samples as vectors of weighted peaks, obtained from their spectra. The likelihood of the presence of an element in a sample is computed by comparing the corresponding vectors of weighted peaks. The weight of a peak is proportional to its intensity and to the inverse of the number of peaks, in the database, in its wavelength neighboring. We suppose to have a database containing the peaks of all elements we want to recognize, where each peak is represented by a wavelength and it is associated with its expected relative intensity and the corresponding element. Detection of elements in a sample is obtained by ranking the elements according to the distance of the associated vectors from the vector representing the sample. The application of this approach to elements identification using LIBS spectra obtained from several kinds of metallic alloys will be also illustrated. The possible extension of this technique towards an algorithm for fully automated LIBS analysis will be discussed.

Rivista/Giornale:  SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Volume n.:  65 (8)      Pagine da: 664  a: 670
DOI: 10.1016/j.sab.2010.04.019

*Impact Factor della Rivista: (2010) 3.552   *Citazioni: 22
data tratti da "WEB OF SCIENCE" (marchio registrato di Thomson Reuters) ed aggiornati a:  21/07/2019

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui
Per visualizzare la scheda delle Citazioni dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info