INO
CNR
vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  
 
 

An Efficient Approach for Preprocessing Data from a Large-Scale Chemical Sensor Array

  Articoli su Riviste JCR/ISI  (anno 2014)

Autori:  Leo M., Distante C., Bernabei M., Persaud K

Affiliazione Autori:  National Research Council of Italy, Institute of Optics, via della Libertà 3 Arnesano (Lecce), 73010, Italy; School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Riassunto:  In this paper, an artificial olfactory system (Electronic Nose) that mimics the biological olfactory system is introduced. The device consists of a Large-Scale Chemical Sensor Array (1 6; 3 8 4 sensors, made of 24 different kinds of conducting polymer materials) that supplies data to software modules, which perform advanced data processing. In particular, the paper concentrates on the software components consisting, at first, of a crucial step that normalizes the heterogeneous sensor data and reduces their inherent noise. Cleaned data are then supplied as input to a data reduction procedure that extracts the most informative and discriminant directions in order to get an efficient representation in a lower dimensional space where it is possible to more easily find a robust mapping between the observed outputs and the characteristics of the odors in input to the device. Experimental qualitative proofs of the validity of the procedure are given by analyzing data acquired for two different pure analytes and their binary mixtures. Moreover, a classification task is performed in order to explore the possibility of automatically recognizing pure compounds and to predict binary mixture concentrations.

Rivista/Giornale:  SENSORS
Volume n.:  14 (9)      Pagine da: 17786  a: 17806
DOI: 10.3390/s140917786

*Impact Factor della Rivista: (2014) 2.245   *Citazioni: 5
data tratti da "WEB OF SCIENCE" (marchio registrato di Thomson Reuters) ed aggiornati a:  19/05/2019

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui
Per visualizzare la scheda delle Citazioni dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info