vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  

Improvement of the visibility of concealed features in artwork NIR reflectograms by information separation

  Articoli su Riviste JCR/ISI  (anno 2017)

Autori:  Blazek J., Striova J., Fontana R., ZÝtovß B

Affiliazione Autori:  Institute of Information Theory and Automation of the CAS,Prague, Czech Republic; National Institute of Optics, National Research Council, Largo Fermi 6, 50125, Florence, Italy

Riassunto:  Near Infrared (NIR) reflectography, coupled to visible (VIS) one, is a spectrophotometric imaging technique employed to probe both the inner and the outer layers of artworks. NIR reflectograms may partially contain information pertinent to the visible spectrum (due to the poor pigment transparency in NIR) and this decreases their comprehensibility. This work presents an innovative digital processing methodology for accentuating information contained in the infrared reflectograms. The proposed method consists of inducing minor changes in pixel intensity by suppressing VIS information content from NIR information content. The method creates such enhanced NIR reflectogram by extrapolating VIS reflectogram to a reflectogram recorded in NIR range and by subtracting it from the measured values in the near infrared spectral sub-band. As an extrapolator we suggest a feed forward artificial neural network (ANN). Significant results of improved visualization are exemplified on reflectograms acquired with a VIS-NIR (400, 2250) nm scanning device on real paintings such as Madonna dei Fusi attributed to Leonardo da Vinci. Parameters of the method, artificial neural network and separability of used pigments are discussed. (C) 2016 Elsevier Inc. All rights reserved.

Volume n.:  60      Pagine da: 140  a: 151
Ulteriori informazioni:  Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme \"Projects of Large Infrastructure for Research, Development, and Innovations\" (LM2010005), is greatly appreciated. Without them this research cannot be possible.
DOI: 10.1016/j.dsp.2016.09.007

*Impact Factor della Rivista: (2017) 2.241   *Citazioni: 2
data tratti da "WEB OF SCIENCE" (marchio registrato di Thomson Reuters) ed aggiornati a:  26/05/2019

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui
Per visualizzare la scheda delle Citazioni dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info