vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  

Novel configurations for a citrus waste based biorefinery: from solventless to simultaneous ultrasound and microwave assisted extraction

  Articoli su Riviste JCR/ISI  (anno 2016)

Autori:  Gonzalez-Rivera J., Spepi A., Ferrari C., Duce C., Longo I., Falconieri D., Piras A., Tinè M

Affiliazione Autori:  CNR INO Pisa, UNI Pisa, UNI Cagliari, Istituto Tecn Ind. Cagliari

Riassunto:  Innovative extraction configurations for the biorefining of a biomass waste (citrus peel) were developed in this work. Non-conventional energies, such as microwaves (MW) and ultrasounds (US), were directly irradiated to the fresh orange peel using a versatile MW coaxial dipole antenna. This particular MW configuration enabled us to build two new extraction systems: (1) a coaxial solventless MW-assisted extraction (SMWAE) approach and, (2) a simultaneous ultrasound coaxial MW-assisted hydrodistillation (US-MWHD) method. The yield and chemical composition of the essential oils (EOs) of the orange peel obtained by the two innovative approaches were analyzed as a function of the extraction time and compared with those from coaxial microwave hydrodistillation (MWHD) and conventional hydrodistillation (CH). The EOs were chemically characterized by GC and GC-MS analysis. The residue mash was then used to extract pectin by a MW-assisted procedure. The structure and thermal stability of the pectin were investigated by FTIR and TG. The biorefining of EOs and pectin from a citrus waste maximises the benefits of our proposed green methodologies, which involve safe operability, faster processing and easy scalability. Furthermore, the energy consumed per unit mass of products in each step of the orange peel biorefining clearly showed that the most promising approach is SMWAE (since it is around 27 times lower than the CH approach). MWHD and US-MWHD also showed more than 60% energy savings compared to CH.

Rivista/Giornale:  GREEN CHEMISTRY
Volume n.:  18 (24)      Pagine da: 6482  a: 6492
Ulteriori informazioni:  This work was supported by FIRB 2012 (n.RBFR12ETL5), funded by the Italian Ministry of University and Research, and by the project PRA-2016-0046 funded by the University of Pisa. The authors would also like to thank C. Lanza, A. Barbini and F. Pardini (INO-CNR) for their valuable technical support.
DOI: 10.1039/c6gc02200f

*Impact Factor della Rivista: (2016) 9.125   *Citazioni: 14
data tratti da "WEB OF SCIENCE" (marchio registrato di Thomson Reuters) ed aggiornati a:  19/05/2019

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui
Per visualizzare la scheda delle Citazioni dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info