vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  

Confocal multispot microscope for fast and deep imaging in semicleared tissues

  Articoli su Riviste JCR/ISI  (anno 2018)

Autori:  Adam M.P., Muellenbroich M.C., Di Giovanna A.P., Alfieri D., Silvestri L., Sacconi L., Pavone F

Affiliazione Autori:  University of Florence, European Laboratory for Non-linear Spectroscopy, Florence, Italy; National Institute of Optics, National Research Council, Florence, Italy; L4T-LIGHT4TECH Srl, Sesto Fiorentino, Italy; University of Florence, Department of Physics, Florence, Italy

Riassunto:  Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transpar- ent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demon- strate microscope performance in fixed brain slices by im- aging dendritic spines up to 400-μm deep.

Volume n.:  23 (2)      Pagine da: 020503-1  a: 020503-4
Ulteriori informazioni:  This project received funding from the Italian Institute of Technology in Genoa and the European Union’s H2020 Research and Innovation Programme under Grant Agreements No. 720270 (Human Brain Project) and 654148 (Laserlab-Europe), and from the EU programme H2020 EXCELLENT SCIENCE, European Research Council (ERC) under Grant Agreement ID No. 692943 (BrainBIT). The project has also been supported by the Italian Ministry for Education, University, and Research in the framework of the Flagship Project NanoMAX and of Eurobioimaging Italian Nodes (ESFRI Research Infrastructure), and by Ente Cassa di Risparmio di Firenze (Private Foundation).
DOI: 10.1117/1.JBO.23.2.020503

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info