vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  

Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes

  Articoli su Riviste JCR/ISI  (anno 2018)

Autori:  Doria S., Sinclair TS., Klein ND., Bennett DIG., Chuang C., Freyria FS., Steiner CP., Foggi P., Nelson KA., Cao JS., Aspuru-Guzik A., Lloyd S., Caram JR., Bawendi MG

Affiliazione Autori:  [Doria, Sandra; Sinclair, Timothy S.; Klein, Nathan D.; Chuang, Chern; Freyria, Francesca S.; Steiner, Colby P.; Nelson, Keith A.; Cao, Jianshu; Caram, Justin R.; Bawendi, Moungi G.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Lloyd, Seth] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Doria, Sandra; Foggi, Paolo] Univ Firenze, European Lab Non Linear Spect LENS, Via Nello Carrara 1, I-50019 Florence, Italy. [Doria, Sandra] Univ Firenze, Dipartimento Chim Ugo Schiff, Via Lastruccia 3-13, I-50019 Florence, Italy. [Bennett, Doran I. G.; Aspuru-Guzik, Alan] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. [Foggi, Paolo] CNR, INO, Largo Fermi 6, I-50125 Florence, Italy. [Foggi, Paolo] Univ Perugia, Dipartimento Chim Biol & Biotecnol, Via Elce Sotto 8, I-06123 Perugia, Italy. [Caram, Justin R.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.

Riassunto:  Photosynthetic antennae and organic electronic materials use topological, structural, and molecular control of delocalized excitons to enhance and direct energy transfer. Interactions between the transition dipoles of individual chromophore units allow for coherent delocalization across multiple molecular sites. This delocalization, for specific geometries, greatly enhances the transition dipole moment of the lowest energy excitonic state relative to the chromophore and increases its radiative rate, a phenomenon known as superradiance. In this study, we show that ordered, self-assembled light-harvesting nanotubes (LHNs) display excitation-induced photobrightening and photo-darkening. These changes in quantum yield arise due to changes in energetic disorder, which in turn increases/decreases excitonic superradiance. Through a combination of experiment and modeling, we show that intense illumination induces different types of chemical change in LHNs that reproducibly alter absorption and fluorescence properties, indicating control over excitonic delocalization. We also show that changes in spectral width and shift can be sensitive measures of system dimensionality, illustrating the mixed 1-2D nature of LHN excitons. Our results demonstrate a path forward for mastery of energetic disorder in an excitonic antenna, with implications for fundamental studies of coherent energy transport.

Rivista/Giornale:  ACS NANO
Volume n.:  12 (5)      Pagine da: 4556  a: 4564
DOI: 10.1021/acsnano.8b00911

   *Citazioni: 5
data tratti da "WEB OF SCIENCE" (marchio registrato di Thomson Reuters) ed aggiornati a:  19/05/2019

Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui
Per visualizzare la scheda delle Citazioni dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info