vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  

The contributions of junctions and nanowires/nanotubes in conductive networks

  Articoli su Riviste JCR/ISI  (anno 2019)

Autori:  Ponzoni A

Affiliazione Autori:  National Institute of Optics of the National Research Council (CNR-INO), Unit of Brescia, Via Branze 45, 25123 Brescia, Italy

Riassunto:  Electrical transport in networked materials occurs through percolative clusters composed of a random distribution of two kinds of interconnected elements: elementary nanostructures and nanostructure-nanostructure junctions. Rationalizing the contribution of these microscopic elements to the macroscopic resistance of the system is a fundamental issue to develop this class of materials and related devices. Focusing on networks composed of high-aspect-ratio nanostructures, such as nanowires (NWs) or nanotubes (NTs), these concepts are still raising controversy in modeling and interpretation of experimental data. Despite these incongruences and the large variations induced by disorder in the electrical properties of such networked systems, this work shows that the ratio between the junction and the nanostructure resistance is nearly the same at the microscopic and macroscopic levels, regardless of the network features. In other words, this means that we may assess the relative contribution of nanostructures and junctions to the macroscopic network resistance directly from the knowledge of its microscopic building blocks. Based on experimental data available in the literature, this result is proven to hold for different materials and network densities, ranging from inorganic NWs to organic carbon NTs and from the percolation critical density nc up to, at least, five times nc, respectively.

Volume n.:  114      Pagine da: 153105-1  a: 153105-5
DOI: 10.1063/1.5090117

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info