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Statistical dynamics of class-B lasers
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We present a simplified theory of the statistical behavior of a single mode laser ruled
by two slow variables (class B lasers). By applying the center manifold theorem we
introduce an improved adiabatic elimination procedure which reduces the description
of class B lasers to two modified rate equations in an appropriate state space. The
statistical dynamics is further reduced to a one dimensional Fokker-Planck equation
in a parameter range corresponding to that where most experiments have been performed.
The usefulness of this approach stems from the fact that a previously available theory
is based on a two dimensional Fokker-Planck equation and limited to a narrower parame-

ter range around threshold.

1. Introduction

Current semiclassical statistical theories of single
mode lasers stem from the seminal paper by Risken
[1], where the dynamics is accounted for by a 1-d
Fokker-Planck equation for the intensity of the laser
field. This is the only relevant variable because the
coupled variables of the gain medium {polarization
and population inversion) are taken to decay within
sufficiently short time, so that their overall effect con-
sists in introducing suitable nonlinear terms in the
intensity equation. The lasers ruled by such a time
scale, have been called class A [2] to distinguish them
from those (class B) where the population damping
is slow compared to the field evolution in the cavity,
so that the laser dynamics is described by two coupled
equations with comparable decay rates. As a conse-
quence the statistical analysis is far more difficult than
that for class-A systems in so far as the correspondent
Fokker-Planck equation would be two-dimensional.
A first systematic attempt of describing the behavior
of class B lasers has been done by Morsch, Risken
and Vollmer [3] who restricted their investigations
to a small parameter region around laser threshold.
Here, we present a somehow complementary ap-
proach, well suited to describe laser dynamics at high-
er pump-values, where the deterministic evolution is
equivalent to that of a weakly damped Toda oscillator

[4]. In fact, the range of validity of the approach
developed in this paper does not include either very
small pump values (where, instead, [3] applies), or
very large ones. In these two extremal conditions, dis-
sipation plays a dominant role. More precisely, start-
ing from the complete set of Maxwell-Bloch equations
including stochastic sources, we perform a refined
adiabatic elimination [5] which yields a set of modi-
fied rate equations. The resulting model is shown to
belong to the well known class of weakly damped
stochastic oscillators with, however, a crucial differ-
ence: the noise source, instead of acting directly on
the momentum, acts on the ‘position’ of the oscillator.
Accordingly, the standard procedure, based on the
reduction to a 1-d Fokker-Planck Eq. [6] for the ‘en-
ergy’, has to be slightly modified. In Sect. 2, we devel-
op the theoretical analysis, which leads to a perturba-
tive expansion for the coefficients of the 1-d Fokker-
Planck equation, and to the associated stationary dis-
tribution for the field intensity. In Sect. 3, a compari-
son with numerical simulations is done, which shows
good agreement over a large range of parameter
values.

2. General theory

The analysis of a single mode laser with a homogen-
eously broadened gain line is described by Maxwell-
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Bloch equations for atomic polarization P, popula-
tion inversion A, and electric field E [2]. When the
cavity frequency is tuned at resonance with the gain
line the equations reduce to
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where noise sources for P and 4 have been added
[3]; black body contributions to the field equation
have been considered negligible. In the above equa-
tions, y,,y,, and k are the decay rates of P, 4 and
E respectively; g is the coupling constant between
field and atoms; D is the pump parameter (i.e. D+ 1
represents the equilibrium value of 4 in the non-lasing
state, and D=0 corresponds to threshold); finally, P
and E have been normalized to their equilibrium
values. The stochastic terms I, I; have zero average
and are §-correlated
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The coefficients in front of them are expressed in
terms of decay rates, population N, of the upper
atomic level, and total atomic population N. The
strength of the stochastic sources have been derived
in {7]. It is well known that, whenever Y127y, k, the
polarization can be adiabatically eliminated, and the
system (2.1) reduces to a set of two rate equations
describing the energy balance between field and popu-
lation inversion. Such a procedure is commonly used
in the case of CO, lasers, although it is not completely
correct, since y, /k~ 10. However, as long as Vi <€y, k,
an alternative adiabatic elimination, based on the
center manifold theory [8], allows to reduce the di-
mensionality of the problem yielding a set of modified
rate equations. Thus far such a program was carried
on mainly in the case of deterministic Eq. [9]. In
this section we extend the method to the entire set
of Langevin equations. According to [5], we perform
a change of variables, such that the new axes are
aligned along the eigenvectors of the stable fixed point
Eo=R=4,=1,
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where y=v, /k, and

p=)v, (L +k)2Dy k (24)

represents the relevant smallness parameter, control-
ling the accuracy of adiabatic elimination. As a conse-
quence, system (2.1) is rewritten as
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I', I, satisfy (2.2), upon replacing ¢ with 7. From (2.5)
it is clear the existence of two well separated time
scales. Indeed, for u <1, the variable R exhibits a fast
decay (time scale O(u) compared with the motion of
z,w (time scale O(1)). Therefore (neglecting the noise
terms), it is reasonable to set the R derivative equal
to zero. Such a procedure is approximately equivalent
to applying the center manifold technique, which al-
lows to find a perturbative expansion of the hypersur-
face where the asmptotic motion settles. Considering
only the first order terms in u, we obtain

_uDjwz
1+

2.7)

In [5], other corrections to the final model have been
estimated, which become relevant for <1 yielding
the second laser threshold. We now extend the adia-
batic elimination in order to account for the stochas-
tic forces. Limiting ourselves again to first order con-
tributions, we can neglect the noise term on the first
of (2.5), as it contributes only to the R-distribution,
transversally to the centre manifold. Therefore, the
final model is simply obtained by adding the effect
of noise terms in the z, w-equations to the determinis-
tic equations. By returning to the more familiar vari-



able E, instead of z, we can write
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Moreover, since the expression of the center manifold
is only approximated up to a first order in g, the
stochastic contribution to w has been neglected. In
order to investigate the behavior of (2.8), it is conve-
nient to introduce the new variable

= In|E|. (2.9)

Equation (2.8) then becomes
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In the r.hs. of the g-equation we have added a deter-
ministic contribution (directly proportional to Q) to
account for an average effect of noise. It derives from
the complex character of the electric field amplitude
E [3], so far completely reglected. By setting u=0,
we obtain the equations of a dissipation-less oscillator
in a Toda-like potential. Therefore, system (2.10) be-
longs to the well known class of weakly damped sto-
chastic nonlinear oscillators. It shows a relevant dif-
ference with the models usually studied in the litera-
ture [6], namely, noise acts on the ‘position’ g, rather
than on the ‘momentum’ w, and hence, it can not
be interpreted as a stochastic force due to the coupling
with a thermal bath. However, in analogy with such
models, it is possible to reduce the solution of (2.10)
to that of a one-dimensional stochastic process. The
main idea is to introduce again a slow variable, which,
in the present case, turns out to be the pseudo-energy
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of the revolutionary motion around the fixed point.
Thus, it is our aim to derive a Fokker-Planck equa-
tion describing the W-evolution. As a first step, we
perform a further change of coordinates from (g, w)
to (g, W). The transformed equations are

=) 2(W— V)~(1 ~)2[W+61 2(e"—1)]
+heq+We Y2I(1)
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where we note that, at variance with standard models,
both variables are affected by noise. Equivalently, we
can write the 2-d Fokker-Planck Eq. for the probabili-
ty density P(q, W, 1)
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We now assume P(g, W, t) to factor-out as [6],[10]

P(q, W,t)=PRy(q,

where Ry(q, W) describes the g-distribution in an ap-
proximate way as the contribution deriving from the
deterministic oscillating motion, i.e., it is assumed to
be proportional to 1/4

W)P(W, 1) (2.14)
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where N{W) is the normalization factor
L dg (2.16)
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By substituting (2.15) in (2.14) and then in (2.13), we
see that the first term in the r.h.s. of (2.13) vanishes
since the g-dependence disappears. As a consequence,
only terms proportional to u remain, indicating that
the fast motion has been eliminated. By further con-
Jecturing an approximate functional dependence of
g on time t, with §~O(1), we note that the other
derivatives with respect to g are equivalent to time
derivatives. Therefore, being proportional to y, they
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are negligible compared to the Lh.s. By finally integra-
ting in g the remaining terms we obtain a closed equa-
tion for P(W, 1) ‘

P 0
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The relevance of (2.17) is twofold. On one side, it
allows to describe in an accurate way the dynamical
behavior of the probability distribution (including the
long-time relaxation processes, here not considered);
on the other hand, it leads to a simple expression
for the stationary solution
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The accuracy of expression (2.19) depends on the size
of the two terms which have been neglected in the
Fokker-Planck Eq. (2.13). As we have already men-
tioned, they depend on the ratio between the period
of the oscillations and the time scale of the dissipative
processes. Therefore, the accuracy of the adiabatic
elimination not only controls the dynamics, but also
the asymptotic probability distribution. In this re-
spect the solution of (2.13) differs from the standard
weakly damped oscillators with the noise source on
the momentum, where the extra terms giving rise to
the above mentioned difficulty do not appear. More-
over, integrals (2.16) and (2.18) are not easy to evalu-
ate, thus we look for a perturbative expansion for
small W-values. We will see that this provides a suffi-
ciently good approximation for a large range of pa-
rameter values. Here, we limit to outline the appro-
priate procedure, directly giving the final results. As

a first step a new integration variable y=q/)/2W is
introduced, together with the smallness parameter

a=]/2W /3. Next, we estimate the extrema y,, y,, by
imposing that the kinetic energy W—V(y) be 0. Such
estimates and the integrands are all evaluated up to
the fourth order in «, which corresponds to a second
order in W. Finally, another change of variable is per-

formed, namely, x= 271 _ 1, which leads to the

symmetric integration interval [ —1, 1]. With these
assumptions, the above integrals are easily comput-
able and they are
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Therefore, the stationary distribution is, up to second
order terms,

288 _K_
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where
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Unfortunately, the sign of second order corrections
is such that it yields a non-normalizable probability
distribution. However, in the limit of small W- and
large K-values, we can expand (2.21), proving that
the distribution is well approximated by the simple
exponential

gl:ﬁe—ﬁw

(2.22)

(2.23)

where f=K+11/12. In the next section we will see
the role played by the corrections, comparing the the-
oretical expressions with the results of numerical sim-
ulations. Here, instead, we estimate the distribution
of laser intensity, by referring to the simplified (2.23).
By substituting (2.23) and (2.15) into (2.14) we find
the joint distribution

e Y
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By means of (2.9) and (2.11), the probability density
(2.24) can be expressed in terms of the population
inversion w and of the intensity I,

B(q,W)=N (2.24)
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rescaled to its mean value D. By further integrating
in w, we obtain the distribution of the sole intensity

(2.25)
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where I is the Euler gamma function. It is interesting
to note that, in the limit D tending to 0, the average
intensity vanishes as it should, while the pseudo ener-
gy W(~p) diverges as 1/D. The general expression
for moments, M,,, and cumulants, K, of distribution
(2.26) is

I'(B+n)
rp)
K,=(n—DIp~"*t1

M,=8""
2.27)

A convolution with a Poissonian distribution allows
to find the final expression for the photon-counting
distribution. However, still referring to (2.26) we see
that the maximum of the probability density is at-
tained at I=1—1/p, very close to the mean value,
1, since f> 1. Moreover, we observe that the relative
variance (second cumulant) K, is very small, and
higher-order cumulants are increasingly smaller, so
that the distribution (2.26) is well approximated by
a Gaussian with variance 1/8. It is also instructive
to make a comparison with the analogous results ob-
tained for class-A lasers, where, we recall, the relative
variance scales as {I> % In the present case, from
(2.22) and (2.6), we find

el )T

which exhibits a weaker dependence on the intensity
for D-values of order 0(1).

(2.28)

3. Numerical simulations

Here, we compare the analytical results derived in
the previous section with numerical simulations of

407

the nonlinear Langevin Eq. (2.10). The comparison
is done for different values of the pump parameter
D, which is the quantity most controllable in experi-
ments. Beside its explicit presence in the starting mod-
el (2.10), it also enters the definitions of u and Q,
(2.4) and (2.6) respectively, and the time rescaling. The
other parameters are chosen with reference to the real
case of CO, lasers where, since u(D=1),Q(D=1)
~1072, our analysis fully applies for pump values
of order O(1). Very close to threshold (D ~0), instead,
u diverges, indicating that the motion in the Toda
potential becomes more and more overdamped. Si-
multaneously, the amplitude of the stochastic force
diverges as D% The approach devised by Risken
in [2] applies to such a limit region. Therefore, we
expect a crossover behavior to separate the regions
of applicability of the two dynamics, and it is interest-
ing to estimate the order of magnitude of D where
it occurs. The lower boundary of the D region where
our method is expected to be in a qualitative agree-
ment with experiments is roughly estimated as the
value where either the losses or the stochastic forces
become non-negligible. In a mathematical language
it is the maximum between D, and D,, where D,,
D, are defined as u(D,)=1,Q(D,)=1. Still referring
to a CO, laser, the validity region extends very close
to threshold: indeed the limit value is D,~ 1072, In
the opposite limit, D— co, the losses again diverge
(as D'?) leading to an overdamped motion, whereas
the noise amplitude decreases as it should, since the
quantum effects vanish. Therefore, we are not inter-
ested in such a region where a statistical approach
is no more required. The nonlinear Langevin Eq.
(2.10) for the logarithm g of the intensity and the
population inversion w have been numerically inte-

Fig. 1. a Theoretical probability distribution
of the pseudo-energy W (dashed line)
compared with numerical results
(hystogram); b the same comparison by
using y=exp(— SW). The pump parameter
D is equal to 1, and the noise strength

0=10"2
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Fig. 2a and b. Same as in Fig. 1, with D=10

Fig. 3aand b. Same as in Fig. 1, with D=10"2
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grated by means of a fourth order Runge-Kutta meth-
od (integration step equal to 1072) and adding, at
each step, a random kick with Gaussian distribution
and a suitable variance which yields the expected dif-
fusion coefficient in the associated Fokker-Planck
equation In order to emphasize the difference between
the expected distribution and the numerical results
we have sometimes used the auxiliary variable
y=exp(—fW). In fact, the energy distribution should
become, if (2.23) were correct, a flat line between 0
(infinite energy) and 1 (zero energy). Therefore, the
deviations from an exponential behavior can be im-
mediately detected. All the simulations have been per-
formed integrating for a time T=2-10°, with a sam-

pling time equal to 1. In Fig. 1a the probability distri-
bution P(W) is plotted for D=1, showing a very good
agreement with the theoretical expression (2.23). The
nice accuracy is also confirmed in Fig. 1b, where P(y)
is drawn. The next simulation (Fig. 2a, b) indicates
that still for D=10 the theoretical prediction is close
to the numerical results. On the other side, an integra-
tion for D=10"2 suggests a good agreement (see
Fig. 3a, b). It is worth to note that such a reasonable
agreement occurs despite W-values are no longer neg-
ligible with respect to 1 and an expansion in a W-
power series is not justified. Furthermore, we have
performed one more simulation with D=1, but a
larger value of Q(=0.1) to control the sensitivity of
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Fig. 4a and b. Same as in Fig. 1, with 0=0.1
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Fig. 5. Variance of field intensity versus D. The continuous curve
represents the theoretical expression, while the dots refer to nu-
merical simulations (with a statistics of 5000 independent data).
Three orders of magnitude in D are investigated

the method to the strength of the noise. The results
in Fig. 4a, b again confirm the accuracy of the theo-
retical approximations.

Finally, to make a quantitative comparison be-
tween theory and numerical experiments, we comput-
ed the variance of the field intensity, which turns out
to be the most relevant physical variable. This has

been done, by exploring a range of three orders of
magnitude in D. The results, obtained with a statistics
of 5-10° independent data, are plotted in Fig. 5. They
are in agreement, within the statistical uncertainty
(denoted by the vertical bars), with the theoretical
results. It is useful to compare such a dependence
of the variance on D, with the corresponding behavior
for class-A lasers. To do that, recall the definition
of the pump parameter a in terms of the actual param-
eters

2 7 p (.1)

/oy V 1+7

For a CO, laser a~2-103D. At variance with class-A
lasers, where the width of the distribution aiready
saturates at g-values around 10 (D~ 10"2), here we
observe a saturation only for D> 10. Finally, the pro-
portionality constant between a, and D allows to un-
derline the separation between the range of applicabil-
ity of our method (D ~ 1, roughly speaking) and that
of [3] (a~1). As is known [2], experiments span over
the wide range 0<D <10, accounted for by our re-
sults.

Therefore, the present approach, based on a fur-
ther reduction of the number of variables (beyond
the elimination of atomic polarization) from 2 to 1
for the pseudo-energy proves to be very powerful in
the statistical description of class-B lasers. An approx-
imate analytic expression for the stationary probabili-
ty distribution has been derived yielding very accurate
results. As a result, a simple analysis of the long-time
relaxation properties of the probability distribution
is made possible, as well.

aq ———
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