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CO2 laser with swept pump parameter: The nonlinear regime
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We show that a C02 laser driven from below to above threshold by pump sweeping displays a linear
dependence of the peak intensity on the switch-on time. This feature is a consequence of the small
spread of the switch-on times. Experimental results for the slope of the linear relation are well repro-
duced by a calculation based on the rate equations.

PACS number(s): 42.50.—p, 42.55.Em

I. INTRODUCTION II. EXPERIMENTAL SETUP AND RESULTS

The study of transient dynamics in laser systems has
given several fundamental results in the past few years.
A delay in the laser switch-on time when the net gain is
swept from below to above threshold has been predicted
theoretically [1] and observed experimentally [2]. More-
over the important role played by quantum noise in
determining macroscopic fluctuations has been investi-
gated in the linear regime of laser amplification for both
class-A and Blasers [3—-6]. The nonlinear regime, where
saturation phenomena become relevant, has been exten-
sively treated for class-A lasers [7], while for class B only
few recent works are available on semiconductor lasers
[8,9]. In any case, in semiconductors the transient times
are so fast that only the statistical envelope of trajectories
can be observed. Dealing instead with a CO& laser pro-
vides a more accessible time scale and hence an experi-
mental characterization of the single transient.

In this paper we report on the dynamics of a single-
mode CO2 laser when the population inversion is swept in
time by applying a linear ramp to the excitation current.
After the laser net gain overcomes the dynamical thresh-
old (amplification regime) a large spike in the intensity
occurs, followed by relaxation oscillations. The peak in-
tensity depends on the value reached by population inver-
sion at the time at which the laser amplification takes
place. For this reason the quantum noise, which deter-
mines a statistical spread in the switch-on times, is also
responsible for the spread in the peak intensity values. A
linear relation between the switch-on time and the peak
intensity has been shown to be a rather general result
when the statistical spread in the switch-on time is small
compared with the mean value [9]. The outline of this
paper is the following. In Sec. II the experimental setup
and results are reported. Section III deals with the
theoretical analysis which provides a simple linear rela-
tionship between the peak intensity and the switch-on
time. In Sec. IV we compare the experimental data with
the results of the preceding section. Finally we draw our
conclusions in Sec. V.

In our experiment (Fig. 1) we use a CO@ laser tube, ter-
minated with Brewster angle windows, placed inside a
resonator 1.5 m long. One of the reflectors of the laser
cavity is a grating (150 lines / mm), selecting the P(20)
line at 10.6 pm. The other is a partially reflecting Ge
mirror (R =90%), with a 5-m radius of curvature. This
mirror is mounted on a hollow cylindrical piezoelectric
translator (PZT), in order to control the detuning be-
tween the center of the molecular line and the frequency
of the cavity mode. The inflow CO2 laser is pumped by a

LT
I

r
PZT

Hvps OCI SCOPE:

LRG

cLocK

FIG. 1. Experimental setup. LT, laser tube; Cx, grating; M,
mirror; PZT, piezoelectric translator; HVPS, high voltage
power supply; OCI, optically coupled isolator; LRCx, linear
ramp generator; ETC, electronic time counter; D, Hg-Cd-Te
detector; A, low-noise amplifier.
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T (ps)

1182.38
1182.37
1182.32
1182.32
1182.79

0=3.80 A/s

5T (ps)

2.22
2.21
2.14
2.01
2.12

966.73
966.73
966.69
966.73
966.70

0=4.69 A/s
1.S8
1.61
1.58
1.67
1.67

TABLE I. Mean value (T) and standard deviation (5T) of
the switch-on time distribution for two different slopes of the
linear ramp.

dc discharge. The discharge length is about 40 cm, and
the gas mixture is composed of CO2 (14.4 vol%), Hz (2
vol%%uo), Nq (14.2 vol %), and He (69.4 vol%) at a total
pressure of 21 mbar, measured at the gas inlet of the laser
tube. The power supply is current stabilized to better
than 0.05%%uo and it can be driven by an external linear
ramp generator with variable slopes [6). The output
current is directly monitored by me'ans of an optically
coupled isolator in series with the discharge tube. The
laser output intensity is detected by a liquid-Nz-cooled
Hg-Cd-Te detector, with a rise time faster than 10 ns.
The photodetector signal is amplified and sent, together
with the current signal, to a digital oscilloscope, inter-
faced via general purpose interface board with a comput-
er. An electronic time counter is used to measure the
time interval between the start of the linear ramp and the
instant at which the laser intensity reaches a given
threshold below the saturation value. The counter re-
peats 1000 measurements and displays the mean value
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FICx. 2. (a) Switching events obtained for 8&=3.80 A/s. (b)
I vs the switch-on time T for 0& =3.80 A/s (I,h =5 mW). The
best fit line slope is 1673 W/s.

290 i i 1 I I I I I I I I I I I

960 965 970 975
Switch —on Time (ps)

FIG. 3. (a) Switching events obtained for L92=4.69 A/s. (b)
I vs the switch-on time T for Oz=4. 69 A/s (I,h =5 mW). The
best fit line slope is 2223 W/s.
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and the standard deviation of the switch-on time distribu-
tion.

We have performed two sets of measurements for
different values of the slope 0 of the discharge current.
In Fig. 2(a) are reported several trajectories of the laser
intensity for 0&=3.80 A/s. The corresponding linear
dependence of the peak intensity from the switch-on time
is presented in Fig. 2(b). Figures 3(a) and 3(b) refer to
02=4.69 A/s. In Table I are reported the results of five
statistical measurements performed for each value of H.

III. THEORETICAL ANALYSIS

Our results can be explained in terms of the single-
mode class-8 laser equations.

where the term I,h
= ~E

~
( T) represents the threshold in-

tensity and the term I = ~E
~

( T ) the laser peak intensi-
ty.

In order to obtain I as a function of the switch-on
time we consider T as the upper limit of validity of the
linear approximation leading to Eq. (3). Moreover as
T= 1 ms the exponential term can be neglected with
respect to unity, obtaining

b(T) =PT

Since E(T )=0, b.(T ) corresponds to the threshold
population inversion

A(T )=

E= —K E+(e)'i g(t),
2

b, = —y(b, —bo) —26 El b, , (2)

Defining

P K 2KI =I — ——1 —ln0 th
2p 6 6 (6)

where E is the dimensionless complex amplitude of the
electric field, 6 the population inversion between the two
resonant levels, K =0.85X10 s ' is the field decay rate
estimated including 7% of diffraction losses and
@=5.0X10 s ' is the value used for the population in-
version decay rate [10]. b,o is the population inversion
provided by the pump mechanism and 6=5.37X10
s ' is the field-matter coupling constant [6]. g(t) is a
complex Gaussian white-noise stochastic process with
zero mean. The last term in Eq. (1) describes a random
process of strength e accounting for spontaneous emis-
sion, which is responsible for the spread in the laser
switch-on time T. The noise strength e is proportional to
the population of the upper level. Our results below de-
pend on e through the value of the switch-on time. T is
defined as the time when the intensity ~E~ reaches 20%
of the saturation value y/2 G. Thus the time range t (T
corresponds to a linear arnplification regime.

As the excitation discharge current is linearly modulat-
ed, Ao can be considered a linear function of time

b,o=b,o(t)=pt .

In the linear regime t & T, the last term in Eq. (2) can be
neglected and the solution is

Eq. (5) can be written in its final form

I =Io+ T —l—n p—TP K P
2 6 y

(7)

According to the experimental data which show a small
dispersion of the switch-on times around the mean value
T, we can expand Eq. (7) in powers of T

BII =I (T)+
, z-=r

(T—T) .

I, =I, ——ln PT —+-K — P KT
6 G( T—1/y )

(10)

The final linear relation between the height of each inten-
sity peak and the corresponding switch-on time is

I =I, +aT
where

b.(t) =Pt —[1—exp( y t ) ] . — —
7

(3) IV. INTERPRETATION OF DATA

In the time interval T ~ t ~ T, where T is the time cor-
responding to the maximum peak intensity, the term g'(t)
in Eq. (1) can be omitted and Eq. (2) can be rewritten
neglecting the first term on the right-hand side as

(4)

Integrating the solution of Eq. (4) combined with the
deterministic part of Eq. (1) between T and T, we obtain
[9]

b(T )I =I,h
—

—,
' [6(T ) —h, ( T) ]+—ln 6 T

The experimental slope of the linear relationship be-
tween the intensity peak and the switch-on time T [see
Figs. (Zb) and (3b)] is 1673 and 2223 W/s, respectively,
with a precision better than 6%. Since in our formalism
the electric field is dimensionless, we have to multiply the
above values for the fixed parameter M =2L /hc v T„
(where I.=1.5 m is the cavity length, h is the Planck
constant, c is the light speed, v is the laser frequency, and
T„=0.1 is the coupling mirror transmission coefficient),
obtaining o.&=8.92X10' s ' and uz=1. 18X10' s
respectively.

On the other side, to evaluate the theoretical slope o.'
defined in Eq. (10), we suppose that the population inver-
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sion b,o(t ) and the discharge current t'(t) are proportional
for small modulation amplitudes

where 1/p =7.639 X 10' A ' [6] and 8 is the slope of the
linear ramp defined in Sec II. Substituting P=g/p in Eq.
(10), we finally obtain a, =8.72 X 10' s ' and a2= 1.19X 10' s '. The agreement with the experimental
data is within 2%%uo.

The two level model of Eqs. (1) and (2) neglects some
physical processes occurring in a CO2 laser as the efFect
of rotational levels, which can be taken into account add-
ing a correction term that does not affect T [11]. The
good quantitative agreement between our experimental
and theoretical results might be understood noting that
the value of the slope given by Eq. (10) only depends on
the values of T and P. As a check of the general validity
of Eq. (10) we have performed numerical simulations of
Eqs. (1) and (2) with y=5X10 s ', y=2. 3X10 s
We have also performed numerical simulations of an ap-

propriate three-level model. In all cases considered the
variations on the value of the switch-on time are less than
l%%uo and the values obtained for the slope a are within 5'
of the experimental values.

V. SUMMARY AND CONCLUSIONS

A linear relationship between I and the switch-on
time T in a CO& laser with slowly swept pump parameter
has been found. Our results can be explained in term of
class-B laser equations with suitable approximation in or-
der to explain the linear regime, where the laser switches
on, and the highly nonlinear regime, where the laser in-
tensity peak reaches the maximum.
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