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Domain Coexistence in Two-Dimensional Optical Patterns
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We give evidence of coexisting transverse patterns of different symmetry in an optical beam
circulating in a loop which contains a nonlinear medium. The symmetry of the patterns is controlled by
the azimuthal rotation introduced in the feedback loop (nonlocality), while the competition is ruled by
the input intensity which determines the distance from threshold (nonlinearity). Domains corresponding
to patterns with different wave vectors (either different wavelength or different orientation) coexist,
nucleating and moving. This gives rise to a complex spatiotemporal dynamics which is characterized
by means of suitable collective indicators.

PACS numbers: 42.65.5f, 42.79.Kr, 82.40.Ck

Preliminary experiments on pattern formation and comsandwiched between two electrodes, together with a
petition in nonlinear optics have shown that patterns ophotoconductor. If the photoconductor is illuminated,
different symmetry can alternate, either periodically ormost of the voltage drop is across the liquid crystal, thus
chaotically [1]. Alternation means that one pattern permroviding an overall molecular alignment and hence a
time is mainly present, with a negligible amount of mixing large Kerr effect. When the illumination is nonuniform,
with other configurations. This was explained in termsthe pattern of the optical beam is transcribed into a
of heteroclinic cycles joining unstable fixed points corre-dephasing pattern. The Kerr medium is thin compared to
sponding to different configurations, with a long persis-its diffusive length, hence the pattern formation is 2D, on
tence time in the neighborhood of each fixed point and @ plane transverse to the direction of optical propagation.
fast transition from one fixed point to the other [2]. The experimental setup consists of an LCLV with a

On the other hand, in the one-dimensional (1D) casefront illumination via a collimated He-Ne laser beam. The
recent evidence has been presented of the coexistencelmdckreflected light, Kerr dephased, undergoes diffraction
patterns of different symmetry in different regions of theand is then applied as a feedback signal on the back side
available domain [3,4]. The patterns can have either #hotoconductor) of the LCLV. A nonlocal feedback is
different wave number [3] or the same wave number buprovided by an image rotation introduced in the feedback
different phase [4]. In the former case the theory has tdoop through a fiber bundle rotation. For different settings
account for the formation of domain walls [5], in the latter of the rotation angleA = 277/N (N integer), different
case the domain walls will be phase defects [4]. types of pattern symmetries are excited, and at low

In the 2D case, the first evidence of coexisting patternintensity one succeeds in isolating the first unstable branch
of different symmetries was provided in an experimentresulting from the interplay of diffraction in free space,
of parametrically excited surface waves [6]. In 2D thediffusion in the Kerr medium and nonlocal feedback [13].
different symmetries can be due either to selection of In the experiment reported here, we adjust the LCLV
different wave vectors corresponding to the same wavegoltage at 12.3 rms and 3 kHz, the free propagation length
number or to selection of different wave numbers. Intheat L = 10 cm, and the angle of rotation of the fiber at
former case, there is a large body of experimental reportA = 27 /7. Under these conditions, the linear stability
referring to bistable situations with the coexistence, e.g.analysis [13] predicts that, as the incident intensigy
of rolls and hexagons in Rayleigh-Bénard convection [7]Jovercomesly,, the first unstable wave number ig =
or in optical patterning [8]. More recently, 2D domain 27 +/3/+/2AL. This is indeed observed experimentally,
coexistence of different patterns has been observed ias shown in Fig. 1(a). When, howevdy, is increased
large aspect ratio systems in parametrically excited surfacsell above I, the predictions of the linear stability
waves [9]. analysis no longer hold.

Here we report evidence of the coexistence of domains Let us define a reduced pump parameter (Ip —
of different wavelengths within the same 2D optical I,)/I;n. Experimentally, a gradual increase oftarting
pattern [10]. The patterns we refer to are transversérom e = 0 leads initially to an increase of the amplitude
patterns in an optical system consisting of a ring cavityof the quasicrystalline patterns, without a scale change.
where an impinging optical field, dephased after crossing\ further increase ine results in the destabilization of
a Kerr medium, modifies the properties of the samea second band aj; = 27 /+2AL [Fig. 1(b)]. In this
medium after a propagation in free space [11]. This issituation the near field signal does not appear as a uniform
obtained via the use of a liquid crystal light valve (LCLV) superposition of patterns at the two different wavelengths,
[12] consisting of a thin layer of liquid crystal molecules but rather as a collection of spatially separated domains,
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FIG. 1. Near field (upper) and far field (lower) patterns observedefer 0.5 (a),(d), e = 2 (b),(e), ande = 4.2 (c),(f). Left
(right) column corresponds to excitation of only the (¢;) band, in the middle column the two bands coexist. The single wave
number cases (left and right) show coexistence of many se&t& of 14 vectors.

each one containing patterns at only one of the two spatiadlome global information about the temporal behavior of
scales. The average size of the domains wijtk- ¢;  the signal, we define the quantity(r) = S(¢)/[S1(¢) +
increases for increasing and eventually the whole wave S,(¢)] as the fraction of the total power that instanta-
front is made of domains at this wave number, while theneously belongs to the first band. Hegr) (j = 1,2)is
domains aly = ¢, are completely suppressed [Fig. 1(c)]. the instantaneous power radially integrated in the Fourier
For e very small, a singleg band is associated with a space over a circular corona of radigls A plot of 7(z)
far field made of & spots (fixed orientation of the wave for three different values o€ is shown in Fig. 3. It is
vectors), and hence the near field shows mainly a singlseen here that, when the system is dominated by one of
domain (besides some boundary perturbations) [13]. Othe two competing bands, the time fluctuation;¢f) are
the contrary, here (rather largej even a single band is very small. On the contrary, the range effor which
a collection of wave vectors with different orientations,
and hence even for a single wavelength we have a many-
domain pattern, with grain boundaries separating different a
orientations. Ase is increased [Figs. 1(a) and 1(b)]
domains with the smaller wave numbgg emerge at
the grain boundaries of the previogs multiorientation
patterns, thus showing that defects are sources that trigger | p
the onset of the, patterns [14]. ‘
In Fig. 2 we report the local intensities at one point I [
of the near field for the three cases described above. ‘
When the wave numbey; is excited(e = 0.2) we have
relatively slow drifts of the domain boundaries. When
only g, is excited(e = 4.5) the corresponding eigenvalue ‘ ‘ ‘
A is complex [13], and thus we obtain rotating patterns. AR A S AR

The _rotation giv_es rise' to a high frequency as observed § — 2 10 15 20 25 30

in Fig. 2(c). Flnally, in Fig. 2(b)(e = 1:9) the two t (sec)
wave numbers coexist, and at a given pixel we have an

alternation between the two regimes. FIG. 2. Near field local intensity (arbitrary units) vs time.

Further information about the observed phenomena calf (&) (€ =02, ¢, band) the fluctuations are due only to

. . . omain dynamics; in (c)e = 4.5, gq; band) there is also a
be gained from the spatial power spectra of the sgna%st oscillation due to the imaginary part of the eigenvalue; (b)

corresponding to the far field. Typical examples of thesge = 1.9, both¢, andg¢, bands) is a superposition of the other
spectra are shown in Figs. 1(d)—1(f). In order to obtaintwo cases.
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1.0 The mode coupling within one ring (at constagt
AL e A" il modulus) was treated in [16], and foF¥ # 3/ (I being
0.8 1 a positive integer) the quadratic nonlinearity disappears

by closure considerations, thus leaving a cubic mode
coupling of the type considered in laser theory for
population coupling in the absence of phase coupling [18].
This applies to our case since we have seledted 7.
0.2 Thus far, however, no treatment has been provided for
the competition between rings i space. The data of
Fig. 1 show that a situation of almost isotropic amplitude
distribution on the two rings is easily reached. Even
though the far field displays this isotropy, the closure
FIG. 3. Temporal evolution of the normalized spectral powerrelations in building the quadratic convolution term for
t;]a(r)ngl t(rl‘Je ﬂ(rasrtcr:ﬂ\g,é)é - né’z‘lé?aggtﬂowzrngurvﬁ)afnjs‘%’i 41 the evolution equation of,(7,7) must be built with a
curve). PP ' " o L unigue sIet of IIXII vectors. This rules out the possibility of
havingq; + q;" = q; (i # j,i andj = 1,2), since with
N =7 (2N = 14 points regularly spaced over each ring)

the two bands show coexistence corresponds to regions gpd with t_hg ratidga|/lq:| = \/g’. the apove relathr_ls are
high fluctuation forn(z), meaning that there neither the never satisfied. Thus also the inter-ring competitions are

coexistence of the two bands nor the domination of oné . . ) .

band over the other are stable phenomena. We find it convenient to follow the evolution of
A quantitative measurement of the transition from thet2he lcorTZespo_ndlng |$Legratedt_ spefctsral %%WESS:

bandg, to the bandy; dominated regime is given by the <7 4il%qi (i = 1,2). The equations fos, ands; are

behavior of the time averagg = (7(¢)); and the standard & . 2

deviation o = [(72 — 7(1)?),]'/? of the quantity 5(¢) ”_gl piSt = BiSt = vi5i52,

versus the pump parameter Plots of the results of these Sy = w28y — B2S5 — v2815;.

measurements are shown in Fig. 4 (left). These plots

give a quantitative confirmation of the enhancement of

fluctuations in the signal that accompanies the regimes of V\;}e havel'thusharr:jved at gen;eral equations anfllqgous
competition coexistence between the two bands. to those ruling the dynamics of competing populations

The experimental results can be described in terms of E_g] ar_ld allrgady used in laser dynamics for two mode
model that, though being oversimplified, retains the fun_opgratlon [ 1 h . h - f the LCLV
damental mechanisms of the process under consideratio&. ecause of the saiurafing characteristics of the

At each point of real space, the local fieltlr,r) is ex- ! 0], 'ghe linear growth rateqe; depenq on the input
pressed in terms of its Fourier expansion, which forms ntensitylo. The_ funCt'on.'“i(IO) IS mcreasmg_formoderate
discrete set ' o and decreasing for highy, where saturation of LCLV

characteristic is effective. We choose as azfunctional form
_ =\ iqr for u;(Ip) a parabola, thatigy; = a;ly — pily, i = 1,2.
E(r,t) = f dqaq(F)e, @) The system admits the following four fixed point9: =
0,0), F1 = (u1/B1,0), F2 =(0,u2/B2), and C =
(1 B2=y1m2)/(B1B2=y172), (Bipa— yau1)/(B1B2 —
. v1v2)). The spatial interaction neglected in Egs. (3)
aq(F) = Zi an0q-q,(7) - (2) permits the birth of coherer1 or F2 domain structures,
" nucleating from local defects. Indeed, when a single
This means that at each position we have a fast family locally displays a defect, this becomes a nucleation
space dependence due to the phase factor, plus a slaenter for the other family. Hence, the observed sharing
dependence due to the selection of a set Mfvactors process on the near field can be interpreted as a continuous
[q,(7)] specific of that domain, and which belong to eithernucleation and competition of the two coherent domains,
the g; or ¢, rings of Fig. 1. Via a Galerkin expansion, and it can be modeled by adding £(r) and w£() to
truncated to those modes whose wave numbers lie otine first and second of Egs. (3), respectively, whé(
the rings of radiig; and ¢,, the two partial differential is a wideband stochastic process with zero average. The
equations ruling the interaction of the field with the Kerr noise contribution in the; equation has been multiplied
medium [9,15] are replaced by a set of ordinary equationfor u, to account for the fact that the perturbationstp
describing the evolution of4(z), with linear terms and arises fromS, domains nucleating from local defects,
leading nonlinearities due to quadratic and cubic modehence, it is proportional to the growth rate of the second
mode coupling [16,17]. family. Similar considerations hold for th® equation.
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FIG. 4. Experimental (left column) and theoretical (right column) plots;6f) (a),(c) ando(e) (b),(d). Experimental error bars

are within the size of the black circles. Theoretical points (black squares) are obtained from numerical integration of Egs. (3)
with w; =1 — (I — 5% 2 =1— Iy — 55?2, B, = B> = 1.5, y; = vy, = 2.4, and the noise addition. Theaxis has been
normalized to the reduced pump parameterin all cases, lines are just a guide connecting points.

In Fig. 4 (right) we report the plots af(e) and ofo (€) [8] E. Pampaloni, S. Residori, and F.T. Arecchi, Europhys.
extracted from the numerical solutions of Egs. (3) withthe  Lett. 24, 647 (1993).
noise addition. For a suitable choice of parameters, theyl9] D.P. Vallette, W. S. Edwards, and J. P. Gollub, Phys. Rev.
are in good qualitative agreement with the experiment. E 49, R4783 (1994); B.J. Gluckman, C.B. Arnold, and

In summary, we have shown that 2D patterns of differ- ~ J-P- Gollub, Phys. Rev. 1, 1128 (1995); K. Kumar and
ent symmetries can coexist over different domains even ~ K-M-S. Bajaj, Phys. Rev. 52, 4606 (1995); F. Melo,

. - P.B. Umbanhowar, and H.L. Swinney, Phys. Rev. Lett.

when they belong to different wavelengths, we have in- 75, 3838 (1995)
troduced global indicators characterizing this coexistencqu] i '

. . s 4 We have been recently informed of an experiment
and we have built a simple model which describes the ~ of competition between two different wave numbers
main experimental features.
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