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Abstract—We review a series of adaptive algorithms which recognize chaos, stabilize the unstable
periodic orbits embedded in a chaotic attractor and synchronize two identical chaotic systems starting
from different initial conditions, by exploiting the information of the local contraction or expansion
rates of a chaotic system. This adaptive strategy is applied to the chaotic Lorenz, the three- and
four-dimensional Rossler and the delayed Mackey-Glass systems. © 1997 Elsevier Science Ltd

1. INTRODUCTION

Recent papers [1-3] have introduced different adaptive strategies for chaos recognition,
control and synchronization.

There are two different methods for inspecting a (possibly continuous) dynamical system:
the standard one which consists of selecting a regularly spaced series of observation times
and plotting the evolution of the corresponding coordinates in some state space. Based upon
this geometrical series of data, one decides whether a signal is regular, chaotic or random.

An alternative approach, whenever the motion is confined within a finite region of space,
consists of fixing a narrow observation window in the coordinate space and registering only
data within that window. This way, the geometric positions are a clustered set, but the
sequence of return times to the window is erratic if the dynamics is irregular. In more
complex dynamics, with multi-branched attractors, as, for example, in the Lorenz case, the
above argument fails in correspondence to sudden jumps from one branch to the other;
indeed, if the window selects positions of one branch, the time sequence is affected by big
holes whenever the flow jumps to other branches and hence the stroboscopic series provides
only partial information on the chaotic motion.

In this report we describe the implementation of a stroboscopic inspection which
overcomes the above difficulty, through an adaptive windowing controlled by the local
variation (expansion or contraction) rates. In Section 2 we show how this procedure provides
useful indicators for chaos recognition, even for systems displaying more than one positive
Liapunov exponent. In Section 3 we apply this method to the control of the different
unstable periodic orbits (UPO) embedded within the chaotic attractor (CA) and in Section 4
we combine adaptation with synchronization of a chaotic dynamics in order to warrant
secure communication between a message sender and a receiver.
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2. ADAPTIVE RECOGNITION OF CHAOS

Let us consider a dissipative dynamics x = f(x, ), where x is a D-dimensional vector and u
a set of control parameters, and start by setting x beyond the first chaotic bifurcation in
order to have an unstable periodic orbit of period 7.

In this section, we aim at recognizing the unperturbed features of this dynamics. For this
purpose, based upon the information provided by the local variation rates, we adjust the
next observation time interval (OTI) shorter or longer than %, in order to minimize the
variation in width of the window including the two points at the extreme of the interval.

We consider an observer who is ‘blind’ to the main coordinate position x; (i = 1,...,D) and
interested only in its variation

8x;(t,+1) = xi(ty+1) — xi(tn), (1)

where t,,, —t, = T, is the nth adjustable interval, to be specified. In order to assign 7,,, we
consider the local variation rate

Ox;(ty 1)

1
Aity)=—In ox(t) | (2)

In

Here 7, ., is the minimum of all 7\, corresponding to the different i, defined by the rule
Tf,ill = 1{1[)(1 - tanh(gAl‘(ln+l)))' (3)

Equation (3) arises from the following considerations. To obtain a sequence of geometrically
regular 8x;, we contract (expand) the OTI when the actual value of éx; is bigger (smaller)
than the previously observed one. The hyperbolic tangent function maps the whole range of
gA; into the interval (—1, +1). The constant g, strictly positive, is chosen in such a way as to
forbid 7 from going to zero. It may be taken as an a priori sensitivity. A more sensible
assignment would consist of looking at the unbiased dynamical evolution for a while and
then taking a g value smaller than the reciprocal of the maximal A recorded in that time
span. Choosing a fixed g is like adjusting the connectivities of a neural network by a
preliminary learning session, while adjusting g upon the information accumulated over a
given number of previous time steps corresponds to considering g as a kind of long-term-
memory, as opposed to the short-term-memory represented by the sequence of 7, [4].
We thus obtain a sequence of observation times starting from f,

ty, tlzt()"‘?, [2:t|+T1,..., tn+l:tn+rn)'“ (4)

corresponding to which the variations of dx;(z,) can be reduced below a preassigned value.

The observations performed at these times provide a ‘regularized” window and the time
sequence (4) now includes the chaotic information which was in the original geometric
sequence x(¢). The same strategy has been implemented in a neural network approach with
applications to real time Monte Carlo calculations as well as to real time recognition of
particle tracks in high energy experiments [5].

Here we show how the above algorithm can be applied to many chaotic situations such as
the Lorenz model (Lo) [6], the three- and four-dimensional Rossler model (respectively
called Ro3 [7] and Ro4 [8]) and the Mackey—Glass delay equation (MG) [9].

For the (x,y) variables of Lo (¢ =10, b =8/3,r=60) and Ro3 (¢ =02, 5 =02, c = 9.0),
we evaluate the actual values x(), y(¢) and the observed values x(z,), y(f,) according to our
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Fig. 1. (From Ref. [1]) Adaptive windowing around a chaotic attractor. (a) x(r) and 8x(r, . ,) = x(¢, + 7,,) — x(t,)
(central line) for chaotic Ro3 (a =0.2, b = 0.2, ¢ = 9.0) dynamics; 7 = 0.01, g = 0.00015. (b) 8x on expanded vertical
scale. (c) Observer time interval 7, vs the absolute time / {vertical scale magnified by 10%),

regularization procedure and compare these values with the differences 8x, 8y. As an
example, we report x and 8x for Ro3 in Fig. 1. The magnified vertical scale of Fig. 1(b)
shows that the window is confined within a range two orders of magnitude smaller than the
variation range of x(¢).

The OTI sequence [Fig. 1(c)] contains the relevant information on the dynamics, and we
can characterize chaos as follows. Since in equation (3) |gA;| <1, then two successive 7, must
be strongly correlated. As a result, even though the set of 7, may be spread over a rather
wide support [as shown in Fig. 1(c)], the return map 7,,, versus 7, must cluster along the
diagonal. Any appreciable deviation from the diagonal denotes the presence of uncorrelated
noise. This is shown in Fig. 2 where we plot the return map of the 7, for Ro4 and for Ro4
with 1% noise.

The above method provides a criterion to forecast whether a string of data corresponds to
a deterministic or stochastic phenomenon. A very stringent test for this inductive problem is
represented by MG

0.2x(t — T)

X = —0.1x(t)+m. 5

With T =100 it corresponds to a ~7.5 dimensional chaotic dynamics [10].
Using the embedding technique, we consider the time series for MG, for a pure white
noise with r.m.s. fluctuations as MG, and for a random phase time series having the same



1434 S. BOCCALETTI er al.

o~
Y
N

24

Tn+]

20

T
n

DR O S YO W YL N T OO T N U U G O T L O S 2 O S AN OO0 O 6 O B O A
N

8 llIIl|lIl]]llllllll[llllllll[[lIlll_llll

8 12 16 20 24

(b)

T
n

l‘l\‘l\\\l‘llll\llll‘I‘Il|\\|l‘||l|\l\|‘l|ll[lll\\l‘llLJLll]l

5 TV TTE T T TV VT T T T R T [ ST T AP A T[T T Ty T T [V v rrrrprrerTrrrTT

5 6 7 8 9 10 1t

Fig. 2. (From Ref. [1]) Return maps 7, ., vs 7, for (a) Ro4 and (b) Ro4 with an additional 1% white noise. Initial
conditions: x(0) = — 20, y(0) = z(0) = 0, w(0) = 15. g = 0.000048.
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spectral power as MG (surrogate) [11]. A stringent condition is provided by the volume
variation rate [[/Z,,; (n) in the m-dimensional embedding space of the window around each
point at f, = n. For a deterministic series, as we increase the embedding dimension m beyond
D +1, where D is the effective dimension of the chaotic attractor, the extra added
dimensions remain unfilled. On the contrary, a noise signal tends to fill all available

dimensions. Thus the new indicator

=53 Taw) ©)
n i=}
provides a very sensitive discrimination between determinism and noise.

Its heuristic meaning emerges from the following considerations. Expanding equation (2)
to first order and referring to the unit time step 7, =1, we can write A;(t,.,) = (8x;(t,+,) —
ox;(1,))/8x,(t,). We now evaluate the variation over the unit time of the volume
V, =1IL, 8x;(t,) made by all m measured variations at time ¢,. The relative variation rate
t, = (V1 — V,)/V, is given by

re=2 N+ 2 A+ [ As (7)
i i i

Summing up over all directions of the embedding space, we introduce the directional

averages

1 no__ 2
(A _E2 PO >_m(m - 1);)\,.)\,-, etc. (8)

and the above equation (7) reads as

(m—1)

o= mN) + T ) £ A7), 9)

As we further sum over all n up to N, the twisting along the chaotic trajectory makes all
directions statistically equivalent, thus in I,r, we can replace <A*> by <A>* for
2=k =m. In the case of stochastic noise, since variations over successive time steps are
uncorrelated, 8x(,.,) — 8x(t,)=8x(z,) and <A > is close to 1, so that <A >" = 0(1).
Instead of a deterministic dynamics two successive steps are strongly correlated, hence
<A > <1, and the last term of equation (9) yields the most sensitive test, since it decays as
exp(—m log(1/(A))).

Based on these considerations, we take the sum over the N trajectory points of the last
term of equation (9) as a suitable indicator, as displayed in equation (6).

In view of what has been said above, B8 scales as e for a deterministic signal [aside a
factor O(1) in the exponent] whereas it scales as e° for noise. In the case of the surrogate of
a deterministic system, one half of the total number of degrees of freedom (the phases of
each Fourier component) scales like noise, while the other half (the amplitudes of each
Fourier component) scales like the deterministic signal. As a result, we expect a global
scaling law e >,

Figure 3 shows the B plots versus m for MG and its surrogate as well as for white noise.
The three plots have exponential fits exp( — Am) with A =1, 0.5 and 0, respectively, for MG,
surrogate and white noise.

Comparing our adaptive recognition with statistical methods based upon the assignment of
a probability measure in phase-space, as counting the number of neighbors within a given
distance from each phase-point [12] or the distribution of distances for closest neighbors [13],
we easily realize that, for M data points, the number of computing operations scales as M in
our case and as M? in statistical cases. Furthermore, to assure a good resolution in m



1436 S. BOCCALETTI et al.

10,000

11T

1000

[RARLL|

100

IBLRARLLUE

T I(HTITF T TTTTI

o1 J 1 | | L |
4 6 8 10 12 14

<
o

Embedding dimension

Fig. 3. (From Ref. 1) B plots vs embedding dimension m. Squares: white noise; triangles: surrogate of MG; circles:
MG attractor. For all cases g =0.0048. Solid lines are exponential fits e, with A =0.039 for white noise,
A = —0.526 for the surrogate of MG and A = — 0.987 for MG.

embedding dimensions, statistical methods require that M increase exponentially in m,
whereas our adaptive strategy is based on variation rates along the coordinate axes and
hence our M scales linearly with m. Similar comparative remarks also hold for recent tests
for determinism [14], based on exploring the evolution of a neighborhood of close points.

3. ADAPTIVE CONTROL OF CHAOS

Controlling chaos consists of perturbing a chaotic system in order to stabilize a given
unstable periodic orbit (UPO) embedded in the chaotic attractor (CA) [15].

The first control method proposed by Ott, Grebogi and Yorke (OGY) [16] consists of
slight readjustment of a control parameter each time the trajectory crosses the Poincaré
section (PS). Since a generic UPO is mapped on the PS by an ordered sequence of crossing
points, OGY is able to stabilize such a sequence whenever the chaotic trajectory closely
visits a neighborhood of one of the saddle PS points. It can happen that the time lapse for a
natural passage of flow within the fixed neighborhood (hence the reason for switching on the
control process) is very large. To minimize such a waiting time, a technique of targeting has
also been introduced [17].

Another technique to constrain a nonlinear system x(¢) following a prescribed goal
dynamics g(¢) has been introduced [18] based upon the addition to the equation of motion
dx/dt = F(x) of the term U(¢) chosen in such a way that |x(¢) - g(t)| — 0 as ¢ — . Reference
[18] considers U(7) = (dg)/(dr) — F(g(¢)). Even though the method provides robust solutions,
in general the perturbation U to be done is of the same order of magnitude as the
unperturbed dynamics F.

In other papers the effects of periodic [19-20] and stochastic [21] perturbations is explored
by producing dramatic changes in the dynamics, which, however, are quite difficult to predict
and in general are not goal oriented.
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A further method [22] has been proposed, based upon the continuous application of a
delayed feedback term in order to force the dynamical evolution of the system toward the
desired periodic dynamics whenever the system closely visits such a periodic behavior.

On the other hand, many experimental systems have been studied with the aim of
establishing control over chaos.

Experimental chaos control and higher order periodic orbit stabilization have been
successfully carried out in dealing with a thermal convection loop [23], a yttrium iron garnet
oscillator [20], a diode resonator [24], an optical multimode chaotic solid-state laser [25], a
Belouzov—Zabotinsky chemical reaction [26] and a CO, laser with modulation of losses [27].
In most cases, stabilization of UPOs was achieved by the technique of occasional
proportional feedback (OPF) introduced in Ref. [24].

Even though a discrete hyperchaotic (with more than one positive Liapunov exponent)
dynamics has been controlled [28] and targetted [29], extension of the above methods to
continuous hyperchaotic dynamics is still an open question.

In this section we report on the application of the adaptive method, which intervenes with
the adaptive time scale 7, intermediate between the short resolution time 7; of continuous
methods [22] and the long one 7, corresponding to the delay between two successive PS
crossings used in Ref. [16].

Let us consider a general dynamical dissipative system ruled by

x=G(x,u), (10)

where x is a D-dimensional vector, G a nonlinear function and u a set of control parameters
chosen in such a way as to produce chaos. We have already discussed in the previous section
[equations (1)-(3)] how adaptive observation can be performed, and how the obtained
sequence of stroboscopic times o, 1, = to+ T, t, =1, + Tyyee, bys1 =1, T Tp,... NOW contains the
relevant information on the dynamics. Characterization and recognition of chaos can be
done by the study of such a time sequence.

In the following, we will summarize the application of such a method to the Lo model and
to the Ro4 model. The latter consists of a four-dimensional dynamical system described by
the equations

X =—X3—X;3

Xy =x; +0.25x, + x4

X3=3+x.x;3

X5 =—0.5x;+0.05x, (11)

For initial conditions x,(0) = —20, x,(0) =x3(0) =0, x,(0)=15, and for the values of
control parameters displayed in the equations, equation (11) produces a hyperchaotic
dynamics with two positive Liapunov exponents [8].

Since we are interested in stabilizing a periodic dynamics, we need to extract the periods
of UPOs embedded within the CA. For this purpose, instead of considering the single step
map (as in the previous section), we construct the maps 7, ., versus 7,, k =1,2,... and plot
the r.m.s.  of the point distribution around the diagonal of such maps as functions of the
step interval k. For chaotic dynamics, temporal selfcorrelation lasts only for a finite time,
hence one should expect to obtain a monotonically increasing function. In fact, the chaotic
dynamics brings the trajectory into the phase-space to shadow the neighborhoods of the
different UPOs. As the trajectory gets close to a UPO of period T, the temporal
selfcorrelation is rebuilt after 7; and the distribution of 7 includes windows of correlated
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Fig. 4. (From Ref. [2]) n-« plot for Ro4 attractor. Initial conditions and control parameters as in the text. The
recognition task has been performed with g = 0.01. The vertical axis has to be multiplied by 107,

values appearing as minima of 7 versus k around &; = T;/(1), (7) being the average of the 7
distribution.

To give an example, in Fig. 4 we report the n-k plot for Ro4, from which one can extract
the different UPO periods looking at the minima of the 7 curve. In fact, during the
stroboscopic observation, the OTIs are changing, and a more rigorous determination of the
period is provided by looking at a suitable cost function in the vicinity of the minima of the 7
curve.

Let us call 7,,;, and 7., respectively, the minimum and the maximum 7 values during the
recognition task. It is evident that the period 7; of the jth UPO is such that

kﬁtmh15;7;f§k§fmax

where k; is the jth minimum of the » curve. Thus, introducing a cost function

N
cv)= 2, x(1,) — x(t, — V), (12)
n=1
where the sum runs over the N data recorded during the recognition task, and looking for
the minimum of C(v) with v running from &;7,,, t0 k;T..x, one obtains the real period 7, of
the jth UPO of the dynamics under study.

Figure 5 shows the cost function C(v) for the eighth minimum of the 7 plot. v =54.64
measures the value of the period-8§ UPO of Ro4.

Once the periods 7;(j = 1,2,...) of the UPOs have been measured, stabilization of each one
can be achieved when the system naturally closely visits the phase space neighborhoods of
that UPO. For a nonautonomous system it can happen that a period T corresponds to many
degenerated UPOs. In this case, selection of the desired one can be provided by study of the
topology of all UPOs corresponding to the same period and by switching on the control task
when the system is shadowing the selected UPO. Some topological approaches to the UPO’s
detection are contained in Ref. [30].

The control procedure is done by use of the following modified algorithm. At each new
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Fig. 5. (From Ref. [2]) Cost function C (v) for the eighth k minimum of Fig. 4. v = 54.64 (indicated by the arrow) is
the measurement of the period for one of the orbit 8s of Rod.

observation time ¢,,,=t,+ 1, and for each component i of the dynamics, instead of
equation (1), we evaluate the differences 8 between actual and desired values:

Sxi(tn+l) = xi({n#-l) - xi(ln+1 - 7;)) (13)

and the local variation rates A now read

1 xlte ) = xiltay — T)
Aﬁﬁd—nmy_mm_mm_n)

Equations (2) and (3) and the choice of the minimum are kept for the updating process of
7. Defining U(z) as the vector with the ith component (constant over each observation time
interval) given by

(14)

1
Ul(t,+1) = ;—'— xtar — 1) — xi(ty 1)), (15)

n+l

we add such a vector to the evolution equation, which now reads

i—l$= G(x, ) + UQ@). (16)

Notice now that As measure how the separation of the actual trajectory from the desired
one evolves; indeed, a negative A means that locally the true orbit is collapsing into the
desired one and hence the actual dynamics is shadowing the desired UPO. On the contrary,
a positive A implies that the actual trajectory is locally diverging away from the desired one
and control has to be performed in order to constrain the orbit to shadow the desired UPO.

As a consequence, contraction or expansion of s now reflects the necessity to perturb the
dynamics more or less often in order to stabilize the desired UPO, as well as fixing the
weight of the correction to be done, which, once a given T; has been chosen by the operator,
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is selected by the same adaptive dynamics. Integrating equation (16) from ¢, ,, to t,,,, since
U(r) is constant over 7, ,, yields the term x(¢,., — 7;) — x(#,+) which exactly corrects for the
previously observed chaotic deviation from the goal dynamics.

Once again, the introduced adaptive weighting procedure in equation (15) assures the
effectiveness of the method (perturbation is larger or smaller whenever it has to be) as well
as the fact that the additive term U is much smaller than the unperturbed dynamics G.

In Fig. 6 we show the control of period-8 of Ro4 and of period-5 of Lo. In the last case, a
larger initial & has been selected in order to highlight the shadowing process.

Finally, in Fig. 7 we report the perturbation U,(¢) and the unperturbed dynamics G, for
the Ro4 model during the control task of period-8, in order to show that the former is
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Fig. 6. (From Ref. [2]) (x,.,x,) projection of the phase space portrait for the controlled period-8 of the Ro4

attractor. (a) The control task has been performed with period-8 extracted from Fig. 5 and g = 107°. (b) Time

evolution of the first component x, of Ro4 before and after control. Arrows indicate the instance at which the

control task begins. (c) (x, %) representation for the period-3 of Lo (o =10, b = 8/3, r =25). In this latter case the

control task has been provided with period-5 measured by the minimum of the cost function (7 = 6.09), g = 10 5,

but the control has been switched on when the distance between the true orbit and desired period was quite large in
order to highlight the shadowing process.
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is between two and three orders of magnitude smaller than the natural evolution of the dynamics. The same
stipulation for the controlling task as mentioned in the caption of Fig. 6.



1442 S. BOCCALETTI et al.

between two and three orders of magnitude smaller than the latter as expected by the above
discussion.

As for time scales, notice that while in equation (13) differences éx; are evaluated with
respect to the goal dynamics (thus over the period 7)), in equation (14) all As are evaluated
over the adaptive 7, which, as discussed in Ref. [1], has to be much larger than the
Runge-Kutta integration interval (about 100 times larger) but much smaller than the UPO
period (as is evident from Fig. 4 where all k;s are much above unity). This way the method
introduces a natural adaptation time scale intermediate between the minimum resolution
time and time scale of the periodic orbits.

In summary, the method acts in two successive steps: an initial recognition task in which
the periods of UPOs are extracted from the unperturbed dynamics and a second control task
whereby one can constrain the system to a given periodic orbit. The second step can also be
used for slaving a given dynamics x(f) to a goal dynamics g by simply redefining the
differences in equation (13) as 8x;(,.,) = x;(t,+,) — g&(t.+,) and keeping equations (14)—(16)
with the new 8s for the updating 7 process and for the controlling process.

The main difference between this method and OGY is that the adaptive technique does
not act on the control parameters, and it needs neither calculation of the PS for the system
under study, nor study of the local dynamics of the different UPOs on the PS.

Notice that the limit g = 0 of our algorithm recovers Ref. [22]. Choosing g # 0 implies two
novel features. First, the adaptive nature of the forcing term [equation (15)], which is
inversely proportional to the time intervals and hence is weighted by the information
extracted from the dynamics itself. Second, while in Ref. [22] the control is readjusted at
each computational time step, here interventions are done at the intermediate time scale,
thus reducing the computational or experimental effort for the control task.

4, ADAPTIVE SYNCHRONIZATION OF CHAOS

The considerations developed in the previous sections can be successfully applied to the
problem of synchronization of chaos. The idea of synchronizing two identical chaotic systems
starting from different initial conditions was introduced by Pecora and Carrols (PC) [31]. It
consists of linking the trajectory of one system to the same values as the other so that they
remain in step with each other, through transmission of a signal. In Ref. [31], this process has
been realized when the subLiapunov exponents of the subsystem to be synchronized are all
negative.

On the other hand, the possibility of encoding a message within a chaotic dynamics [32]
has been recently shown. This suggests the use of chaos synchronization to produce secure
communication between a sender and a receiver. However, several problems arise in order
to assure security in the communication. The main one is due to the fact that the sender
must transmit at least one of the system variables to the receiver. As a result, a clever spy
intercepting the communications can reconstruct the whole dynamics, hence decoding the
message. To prevent interceptions, Cuomo and Hoppenheim [33] have proposed to use
chaos to hide messages. This way, the transmitted signal is the sum of a chaotic signal and a
given message which can be reconstructed by the receiver once it has been synchronized with
the sender. However, Perez and Cerdeira [34] have shown that messages masked by
low-dimensional chaotic processes, once intercepted, can sometimes be readily extracted.
Attention has later been directed to the implementation of the PC idea to higher
dimensional systems [35] where increased unpredictability may improve security in the
communication. However, the possibility of decoding the system through the reconstruction
of the signal is still not fully prevented.
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Other problems rely on the limitations of the PC procedure to those subsystems which
show negative subLiapunov exponents. Thus, any additive signal introduced to hide the real
message should be an infinitesimal perturbation of the signal itself, with the same effect as
the natural noise within the communication procedure.

Even though enrichment of the PC method has been done or alternative approaches to
synchronization based on nonreplica subsystems have been proposed [36], the problem of
security in the communications is not yet fully resolved.

In this section we review the application of the adaptive scheme for chaos synchronization
whereby one can overcome the above difficulties and security in the communication is
guaranteed against external interceptions. This scheme combines the PC idea with the
adaptive algorithm reviewed above. Let us suppose we have a message sender (Alice) and a
receiver (Bob) in the presence of a spy (James) ready to intercept and decode any
communication between them. Alice consists of two identical chaotic systems

x; =f(x, n),
x.Z = f(xb Au')r (17)

where u is a set of control parameters chosen in such a way as to produce chaos, x, X, are
two D-dimensional vectors (D =3) and f is a nonlinear function. On the other hand, Bob
consists of a third identical system

X3 = f(x3, w). (18)

The three systems start from different initial conditions, thus producing unsynchronized
dynamics. In the following, the three systems will be represented by the Lo system. Then the
vectors X; = (x,,;,Z;), (j = 1,2,3) obey the equations:

X/» = O'(y] - xi),
Vi =X~ Y T X%,
;= —bz; + x;y; (19)

We suppose that the message Alice must transmit to Bob be encoded in the variable x, ().
The scheme for the communication is represented in Fig. 8.

The first step is to produce synchronization between x, and x;. Bob sends the variable y;(t)
to Alice which is replaced in the equations for x, and z,. Synchronization is assured by the
fact that the subLiapunov exponents for the subsystem (x,,z,) are both negative [31] (for
o =10, b =8/3 and r = 60 they are —2.67 and —9.99, respectively).

Then Alice knows the whole actual dynamical state of Bob and consequently can transmit
the perturbation U(t) to Bob to be applied to the x; equation in order to synchronize the
system x5 to x;. Alice makes use of the adaptive method to slave the system x; to the goal
dynamics x,. At any of Alice’s observation times t,,, =¢, + 1,, Alice defines the difference
between current and target dynamics

8n+l :x2(tn+l)—xl(tn+l)) (20)

and replaces the new definition of § into equations (13)—(16). The perturbation U(t) is now
given by
K

n+1

U(r) = —— (xi(1) — x2(1)). (21)

To demonstrate the effectiveness of the proposed scheme, Fig. 9 reports the temporal
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ALICE

Xy =alyy - xy)

AP IR R Rt o)

)= —b:2 +Xy¥3

I

BOB

Xy = o(‘v3 - x3) +u

Y3 S X3 Y34l

Iy = -bz3 + X3y

Fig. 8. (From Ref. [3]) The scheme for adaptive synchronization. Bob sends the variable y, to Alice to synchronize
X, and x,. Alice sends the adaptive correction U(r) to Bob to be added to the evolution equation for x;. James can
intercept both U(r) and y;.

4
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-4 -
=
=
I—
_R_ -
<
o0
2
-8
-12 A

50

Fig. 9. (From Ref. [3]) Temporal evolution of the quantity log,, (}x, — x;|) measuring the synchronization between
x, and x;, thus indicating how accurate Bob is at receiving and decoding the message sent by Alice. o =10, b =8/3,
r =60, t,=0.01, g =0.011, K =0.1.



Recognition, control and synchronization of chaos 1445

(a)

log gl —xs]
N

-12 T T T T T T T T T
] 25 50 75 100 125
Time
Fig. 10. Caption overleaf.

behavior of Ax =|x; — x,| which measures the synchronization between Alice and Bob for
o =10, b =8/3 and r = 60. Similar results also hold for |y, — ys| and |z, — z5], thus indicating
that the systems x, and x; are globally synchronized. As a consequence, any message
encoded within x, is easily received and decoded by Bob.

Let us now discuss the problem of security. James intercepts the two communication
signals U(t) and y;(¢). No information on x, can be retrieved from U(¢) since U(t) vanishes
as soon as Alice and Bob reach synchronization, and the weighting factor K/t,., is not
decided a priori, but is continuously changed by the same dynamics (no fixed rule is
available for James to decode the signal). One may speculate that, from the knowledge of y;,
James can reconstruct the whole CA corresponding to x3, hence the messages when x; and x;
become synchronized.

To prevent this, once Alice and Bob have previously agreed on a given accuracy 8 for the
reception of the message, each time such an accuracy has been reached (Alice can test this
since she has full information on the dynamical state of Bob), Bob stops sending y; for a
given time lag 7;. In the meantime, the two systems x, and x; evolve separately. After T,
Bob again starts sending y; to Alice. If 7; exceeds the decorrelation time 7 of the system (the
reciprocal of the maximum Liapunov exponent A), then the effective signal sent by Bob to
Alice results in the collection of uncorrelated temporal subsequences, and no reconstruction
of x; is possible by James in this case.

The procedure relies on the robustness of the synchronizing method. In Fig. 10 we report
the results for 7,=1 and @ =107 (notice that in our case A=1.41, hence T,> 7 =0.71).
Our scheme is able to maintain the stipulated accuracy [Fig. 10(a)] even in the case in which
the signal sent by Bob to Alice is affected by large holes [Fig. 10(b)] which prevent possible
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(b)
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|
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Fig. 10. (From Ref. [3]) (a) Temporal evolution of log,, (lx; — x3{) for 8 =10"> and 7,=1>(1/A)=0.71. The
stipulated accuracy in the transmission is preserved in time even though: (b) the synchronization signal Bob sends
to Alice is affected by large holes which prevent any reconstruction of the message and (c) the controlling signal
U(t) is kept within a range negligible with respect to the dynamics. Other parameters are as in Fig. 9.
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external reconstructions of x,;(¢). Finally, Fig. 10(c) shows the controlling signal which

remains confined within a range negligible with respect to the x,; dynamics (x, variations
from —28 to 28).
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