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Abstract. We introduce a novel control method for a delayed dynamical system exhibiting high-dimensional
chaos. The control is based on a negative feedback loop with an adaptive filtering, consisting of a selective
filter, centered at the frequency of the orbit to be stabilized, with the addition of a time derivative correc-
tion. The validity of the method is also discussed in the framework of a space-like representation adopted
to study the analogies between delayed dynamical systems and spatially extended systems.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 42.50.Lc Quantum fluctuations,
quantum noise, and quantum jumps – 42.55.Lt Gas lasers including excimer and metal-vapor lasers

1 Introduction

Spatiotemporal chaos, i.e. the presence of deterministic
chaos in spatially extended systems, has been largely in-
vestigated and discussed in nonlinear optics [1]. To this
aim, order parameter equations, in the form of Ginzburg-
Landau [2,3] or Swift-Hohenberg equations [4,5], have
been used to interpret experimental results in several pat-
tern forming devices. The interest in nonlinear optics is
also related to the fact that the coupling between diffrac-
tion or dispersion and medium nonlinearities may be the
source of spatial instabilities.

Stabilizing spatiotemporal chaos into a regular peri-
odic behavior is relevant for many applications. The chaos
control method by Ott, Grebogi and Yorke [6] consists in
stabilizing one of the unstable periodic orbits embedded
in a chaotic attractor by perturbing a control parameter.
Development of chaos control techniques [7] to spatially
extended media for stabilizing patterns and manipulating
spatiotemporal dynamics [8] is nowadays a major chal-
lenge, and different schemes have been demonstrated [9].

Here we present an efficient control method for a de-
layed feedback system. These systems, for delays long with
respect to the intrinsic decorrelation time correspond-
ing to a short-delay dynamics, display a high-dimension
chaotic behavior. A suitable space-like representation [10]
provides an analogy between delayed systems and space
extended systems. The analogy rests on the fact that
the time variable t can be decomposed into a continuous
spacelike variable σ (0 ≤ σ ≤ τ) and a discrete timelike
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variable nτ :
t ≡ σ + nτ ,

where τ is the delay time. In this framework, the long-
range temporal interaction due to the delayed feedback
can be considered as a local interaction from one to the
next delay unit. Thus, the behavior of such a system can
be studied by representing the original signal x(t) as a
space-time plot of a one-dimensional spatial system of
length L = τ on a discrete-time lattice. Typically, when
the delay τ is larger than the characteristic oscillating pe-
riod, it is possible to observe phase defects, i.e. points
where the phase presents a discontinuity and the ampli-
tude goes to zero [11].

Here we refer to the pseudo-spatial structures pro-
duced by a CO2 laser with delayed feedback. In partic-
ular we demonstrate the possibility of controlling irregu-
lar patterns by applying a real-time implementation of an
adaptive algorithm [12]. This method allows stabilization
of the period and the amplitude of the chaotic oscillations
by eliminating the zero-amplitude points which can origi-
nate spatial defects [13].

2 The experimental set-up and results

The experimental system is a single-mode CO2 laser with
an electro-optic feedback on the cavity losses (Fig. 1). A
photodetector yields a voltage proportional to the laser
output intensity. This voltage, after a suitable delay and
amplification, drives an intracavity electro-optic modula-
tor. The detector is a fast Hg-Cd-Te photodiode and the
delay line is realized using fast (2 MHz) and accurate (12
bits) A/D (analog-to-digital) and D/A converters allow-
ing variations of the delay time τ up to 130 ms with 0.5 µs
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Fig. 1. Experimental setup. M: electro-optic modulator; LT:
laser tube; D: HgCdTe detector; τ : delay line; WF: washout fil-
ter; d/dt: derivative block; VGA: variable gain amplifier; HVA:
high-voltage amplifier; B: bias input.

resolution. The high-voltage amplifier adds to the delayed
signal a continuous voltage level B which, once τ is fixed,
acts as the control parameter.

Even at zero delay, by increasing the bias B, the sys-
tem undergoes a Hopf bifurcation, with the fundamental
period around 20 µs, and eventually it enters a chaotic
regime. If the delay τ is of the order of the oscillating pe-
riod of the system, the fractal dimension of the chaotic at-
tractor, reached through quasiperiodicity, remains around
3 [14]. Since the aim of the present work is to implement
a control strategy for a high-dimensional chaotic regime
(characterized by more than one positive Lyapunov expo-
nent), we have explored a delay range from τ = 50 µs to
τ = 600 µs. By a simple argument [14], the number of
extra degrees of freedom due to the delay is given approx-
imately by the ratio between τ and the correlation time
of the intrinsic chaotic motion which is around 100 µs. A
rigorous demonstration of the high dimensionality of the
system requires a relevant effort, not only because a large
number of data points have to be analyzed, but also be-
cause new techniques are necessary, since in this situation
traditional methods, such as correlation dimension evalu-
ation by the Grassberger-Procaccia algorithm, do not pro-
vide consistent results [15]. Evidence that delayed systems
such as ours can have more than one positive Lyapunov
exponent for τ larger than 50 µs has been recently given
with a new method of analyzing delayed dynamics [15,
16]. For the above range of τ values and for increasing B,
the system always shows the same qualitative behavior.
Superimposed to the Hopf oscillation, we observe a deep
modulation paced by the inverse of the delay τ , while the
attractor becomes chaotic. A typical time sequence of the
laser intensity x(t) is shown in Figure 2 for τ = 150 µs, to-
gether with the corresponding power spectrum. For such
a delay time, four positive Lyapunov exponents have been
found [16], with a Kaplan-Yorke dimension of about 8.5.
A further increase of B leads to a collapse of the chaotic
attractor into another stable limit cycle. The signal ac-
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Fig. 2. (a) Laser intensity signal for τ = 150 µs and B =
275 V. (b) Corresponding power spectrum. f1 = 1/T = 43 kHz
is the Hopf frequency, f2 = 1/τ = 6.67 kHz is the reciprocal
delay time.

quisition was performed by means of a 12-bits PCI card
(National Instruments PCI-MIO-16E-1), driven by a cus-
tom software application developed with LabView, that
performs also a real-time 2D reconstruction of the signal.
Figure 3 shows such a representation at the same param-
eter values corresponding to Figure 2. The aperiodic be-
havior of the system is clearly proved by the presence of
irregular roll structures. Similar results can be obtained
for the other τ values previously specified.

The first step to achieve stabilization is to employ
a “washout filter” [17]. It consists of a negative feed-
back loop configuration, wherein all unwanted frequen-
cies present in the chaotic spectrum of the output signal
x(t) are transmitted as corrections through a selective fil-
ter. In this way, the system is allowed to oscillate at the
only frequency which is not subtracted, namely that of
the unstable orbit to be stabilized. The observation of the
power spectrum reported in Figure 2 can help in defining
the filter characteristics. The peak structure is due to the
competition between the Hopf frequency f1 = 43 kHz and
the inverse of the delay time 1/τ = f2 = 6.67 kHz. Thus,
following a strategy already tested [18], we use a washout
filter whose transfer function presents a zero of amplitude
at f1 and a zero of phase at f2 (see Fig. 4). In this way,
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Fig. 3. Two-dimensional plot of the experimental signal of
Figure 2. The horizontal axis represents time (the full scale
is equal to a delay time τ = 150 µs). On the vertical axis 75
consecutive delay units are reported.

the feedback loop provides minimum and maximum re-
jection at f1 and f2, respectively. These features could in
principle stabilize the unstable limit cycle with frequency
f1, while canceling the effects of the delay at frequency
f2. The transfer function of Figure 4 can be represented
analitically by the following formula (s = iω) [18]

C(s) =
ks(s2 + Ω2)(

s2 + ζΩs +
Ω2

4

)
(s + µΩ)

,

where Ω = 2πf1, k is the gain, ζ and µ suitable parame-
ters.

It is important to observe that the above control
method presents several analogies with the Time De-
layed Auto-Synchronization (TDAS) method, proposed by
Pyragas [19]. The TDAS consists in a feedback which rein-
jects into the system the difference between the output
signal x(t) and its delayed value x(t − T ) with a certain
amplification factor K; this can allow stabilization of an
unstable orbit with period T . The control signal is in the
form

U(t) = K[x(t − T ) − x(t)] ,

and the corresponding transfer function is

C ′(s) = K(1 − e−sT ) .

In the low-frequency domain, the transfer function C ′(s)
is similar to that of the washout filter C(s) [17], since both
present a zero of the amplitude at f1, provided f1 = 1/T
(Fig. 4). On the other hand, the TDAS transfer function
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Fig. 4. Amplitude and phase of the two transfer functions
C(s) (solid line) and C′(s) (dashed line). For both functions
f1 = 1/T = 43 kHz.

amplitude goes to zero also for all f1 harmonics (thus en-
suring exact zeroing of the control signal when the stabi-
lization is obtained), while the phase necessarily crosses
zero at f1/2. Several experimental applications of the
TDAS method have been reported in the literature [20].
Recently, Just et al. [21] analyzed the mechanism of time-
delayed feedback control from a theoretical point of view,
and their expectations have been verified in a nonlinear
electronic circuit. The same authors also addressed the
problem of the mismatch between the delay τ and the
period T of the unstable orbit to be stabilized, and the
influence of the control loop latency [22].

At variance with the results on low-dimensional
chaotic dynamics, the application of a control loop based
only on the washout filter fails when τ > 50 µs. The
presence of a large delay and, consequently, of high-
dimensional chaotic signals suggests that more informa-
tion on the state of the system is needed in the control
loop in order to achieve stabilization. For this reason, we
have studied the possibility of implementing an analog
version of the adaptive algorithm (AA) proposed in [12].
It consists in a sequence of variable resolution observation
intervals at which the state variable is sampled. The sam-
pling times are chosen so that the sequence of observed
points forms a regularized set, in the sense that the sepa-
ration of adjacent points is almost uniform. This technique
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Fig. 5. Stabilized Hopf oscillation of the laser intensity for the
same parameter values of Figure 2.
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Fig. 6. Two-dimensional plot of the experimental signal of
Figure 5.

would require a computer-aided real-time analysis of the
temporal signal. Anyway, it has been demonstrated that
the AA can be conveniently approximated at the first or-
der in time with the following control signal (dots denote
time derivatives) [13]:

U(t) = K1[x(t − T ) − x(t)] + K2[ẋ(t − T ) − ẋ(t)]

which, considering the close analogy between C(s) and
C ′(s), leads to the following transfer function:

C∗(s) = (K1 + sK2)C(s) .

Such a control can be easily realized if the output volt-
age from the washout filter is added with its time deriva-
tive (see Fig. 1). Obviously, the amplification factors for
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Fig. 7. Amplitude and phase of the second washout filter (solid
line) compared with C′(s) (dashed line). For both functions
f1 = 1/T = 43 kHz.

the two signals contributing to the global control must be
regulated separately.

With the use of this improved scheme we have con-
verted the chaotic motion into a limit cycle with period
1/f1; the time sequence of the stabilized output laser in-
tensity and its 2D representation are reported in Figures 5
and 6, respectively, for the same parameter values of Fig-
ures 2 and 3. It is important to stress the following experi-
mental results: i) the control signal compared with the un-
perturbed delayed feedback is of the order of a few percent;
ii) the control works for K2 ≥ 0.8K1 thus confirming the
relevance of the derivative correction. For K2 < 0.8K1,
long delays are not stabilized by the washout filter. In
such a case, an increase of the amount of perturbation
K1 above a few percent changes drastically the nature of
the dynamics, forcing the system into another periodic
orbit no longer coinciding with the original Hopf orbit;
iii) the control loop has been entirely realized with ana-
log circuitry and consequently can be very fast; iv) finally,
stabilization is effective independently of the delay time τ .
This last observation gave us hint to verify that the con-
dition of having a zero in the phase diagram of C(s) at
f2 = 1/τ can be relaxed. In fact, we have again obtained
stabilization for all τ values after replacing the washout
filter with another filter having a transfer function closer
to C ′(s) (see Fig. 7).
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3 Conclusions

We have shown that in a delayed dynamical system until
delays are relatively short (i.e. comparable with the decor-
relation time of the nondelayed chaotic system), it is pos-
sible to stabilize periodic behaviours by using a feedback
control based on selective filtering. This selective filtering
displays the same essential features as a TDAS recently
explored in detail [22]. However, for a long delay inducing
a high-dimensional chaos, it is necessary to recur to an
adaptive control, based on the combination of a washout
filter with its time derivative, in a negative feedback con-
figuration.
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