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Abstract

As an atomic Bose Einstein condensate (BEC} is coupled to 2 source of uncondensed atoms at the same temperature and
10 4 sink {extraction towards an atom laser) the idealized description in terms of a Gross—Pitaevsky equation {GF) no longer
holds. Under suitable physical assumptions we show that the dissipative BEC obeys a Complex Ginzburg Landau equation
(CGL) and for some parameter range il undergoes a space tme patterning. As a consequence, the density of BEC atoms
within the trap displays non trivial space time correfations, which cap be detected by roonitoring the density profile of the
outgoing atom laser. The patierning conditien requizes a negative scattering leagth, as e.g. In TL4. T such a case we expect a
many domain collapsed regime, rather than a single one as reported for a closed BEC. ©2000 Elsevier Science B.V. Al

rights reserved.

1. Introduction

The BEC dynamics in an atomic trap is ruled by a
GP [1,2] which in fact is a nonlinear Schxidinger
equation {NLS} describing a conservative motion.
Experimental evidence of BEC in a trap [3-5] con-
firmed quatitatively a dynamical picture based on 2
GP description. On the other hand, extaction of
BEC-atoms toward an atom laser [6—38] introduces a
dissipation which must be compensated for by a

- trangfer from the uncondensed fraction of trapped

atoms. Those ones on their turn must be refilled by a
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Also ar Dept, of Physics, University of Florence, Florence,
Italy, E-mail: arecchi@inosit
N Also at Dept. of Physics, Univessity of Liege, Liege, Bei-
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purnping process which, in the actual laboratory set
ups is a discontinuous process [6-~8] but that we here
consider as a continuous refilling, even though no
working scheme is available yet. In Section 2 we
describe the addition of dissipative interactions
throngh coupled rate equations, as done by Kneer et
al, [9L In Section 3 we provide the physical grounds
for an additional space dependent (diffusive) process
and introduce an adiabatic elimination procedure,
whereby we arrive at a closed equation which in fact
is a CGL. In Section 4 we rescale the CGL around
threshold for both positive (*7Rb) and negative ("L
scattering lengths, showing that in the first case the
BEC is stable against space time variations, whereas
in the second case the gystem can easily cross the
instability barrier (so-calied Benjamin—Feir line (10~
12]). In Section 5 we present numesical results show-
ing that in fhe unstable case, rather than collapsing
into one singular spot as in the isolated BEC, the
open system: presents meny uncorrelated domains

00304618 /00 /5 - see front matter © 2000 Eisevier Science B.V. All rights reserved.
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{space-time chaos). In Section 6 we compare the
swength of the aoniinear dissipative term Introduced
by us with the 3-body recombipation rate.

2. The dynamics of an open BEC

We know 1,2} that a BEC is modeled by the GP

. a¢ ﬁz 2 2

i = = Vi Vbt el $179- 1
where ¢ = JE ¢i® is the macroscopic wave function
describing the probability amplitude of the conden-
sate, V., is the rap potential, shaped as a harmonic
oscillator with frequency , and g is the coupling
constant for the nonlinear (density |17 dependent)
self interaction. g is proportonal to the s-wave

scattering length 4

4nh?
5=

a,. (2}

We discuss specific experimental situations con-
cerning ¥'Rb atoms (m = 1.4 X 107> kg, a,=5.77
am) and Tii atoms {m=0115x107% kg, a,=
—1.45 nm)} [21. For an anisotzapic trap the frequency
ts w={w w, u)/? [2-5] The above equation is
formally 2 conservative non linear Schrodinger equa-
don (NLS). Thus, it is a straightforward task 10
attach to 4 BEC all those space-time features familiar
of a NLS as e.g solitary structures and vorices
{13,14], which have been explored in the recent past
for a NLS, mainly in connection with pulse propaga-
tion in optical fibess [15,16].

On the other hand the idealized picture of a BEC
in an isclated system is in contrast with two physical
facts, namely,

i) The BEC is made of that fraction of atoms
which have collapsed into the ground state {7 =0
of the harmenic oscillator trap potential; these atoms
interact via collisions with those ones which are
distributed over the excited states (> 0} of the trap.
The uacondensed atomic density n, evelves jn time
not anly because of the coupling with the condensed
phase described by ¢, but also because trapping and
coofing processes pmply a feeding {pumping) at a
jocal rate R{r), the space dependence accounts for
the non uniformities of the pumping process as well
as for losses due to escape from the trap, at a rate v,

n

i) In order to have an atom laser, a radio fre-

quency {zf) field is applied to the trap. The rf changes

the magnetic quantym cumber of the atoms’ ground
state, thus transforming the trapping potential inte a |
repulsive one and letting atoms escape from the BEC

at a rate ¥, {6-8}

Both 1) and ii) have been modeled by Kneer et al,
[9] by adding dissipative terms 10 Eq. (1) and cou-
pling the resulting equation with a rate equation for
n, (as a fact, rate equation coupling between con-
densed and uncondensed atoms had already been

introduced by Speew et al. [17D. In a slighily differ -

ent formaulation, this amounnts to the following egua-
tions

3 B
ALY YR
2m

i i
+glgl—Shvdt salng ()
and

ng=R{r} —yn,— In.n. {4)

hese T is the rate constant coupling the condensed

field ¢ with the uncendensed density 7z, and n.=|

$17 is the local density of the condensed phase. We
have modified the model of Ref. [9] as follows. At
vaviapce with {9], where Egs. (3) and (4) were
written for the overall atomic population N, over the

whole trap volume V, that is,

Furthermore our locat feeding rate R{r) is related to
e overall rate R, of [9] by

R,= [R(Er. (8)

3. CGL picture of the open BEC

Egs. (3) and {4) were the basis of the model
seported in Ref. 9. We wish to improve that picture,
based on the following considerations. The vncon-
Zensed phase, n,, is fed by a pumping process R{r}

which is in general nmon umiform, and is locally

depleted by its coupling with the condensed phase.
As 2 result, 7, has a sensible space dependence and

hence it undergoes diffusion processes. Precisely, by
the flnctuation-dissipation theorem [18,19], the diffu-
. sion in velocity is given by

kT

D (s ®)

The comesponding diffusion constant in real space

wilk be

5 D, 1 ksT( —
R s m*sT ). 10
" R ) (10)

For ¥Rb at T= 100 nK , and for v, =5 X 10°

57" {of the order of the average trap frequency '
@ =415 Hz) [9] this yields

LD 2% 1078 (ms™ ). (11)

““Thus we must add the term [,V *n, to Eq. (4).

N, = |n,dr, {3
u f ) Once the BEC has been formed, the escape rate y, in

Eq. (3) is compensated for by the feeding rate I n,.
As we set the BEC close to threshold, because of
_critical slowing dowa, the ¢ dynamics will be much
$lower than the n, dynamics, thus we can apply an
afiabatic elimination procedure {20], find a quasi
Stationary solution for n, in terms of ¢ and replace
;t iﬂgl Eq. (3) which then becomes a closed equation
or .

‘We specify the above procedure by the foliowing
ps. Fist, rewrite Eq. (4) including diffusion

R{r) =~ y,n, + DV, —~ 'n, i1 {12)

Nex:, we take its space Foarier transform. The linear
TS are trivial, whereas the nonlinear texm shouid

which is then coupled t©
N,= [r&r=[141*(r)e'r, (6)

here we prefer to deal with a local coupling. Fa fac
Fgs. (3) and (4) as written above are more conve
nient, as they refer to a local interaction. The coi
pling rate of uncondensed 1o condensed atoms,
(m%s~ '), is given by the global rate used in {9
which we call I, dividing by the trap volurse v

rftg(s-*). a
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provide a convolution integral. Even though the con-
densate is not aniform, we consider only the k=0
component in the nonlinear term which is just a
perturbation; then its Fourder transform is 5| ¢(r)
§2 = | $|3 8(k) and Bq. (12} ransforms as

Ag=Re~ (%, + DK )ne~ Tngl $13- (13)

where n, =% nr,, R,=%R(r). The adiabatic elimi-
nation procedure consists in taking the statiomary
solution of Bg. (13) and replacing iato Bq. (3). The
stationary solution of Eq. (13) is

Ry

—YU
M= T : (14
1+ k2 + —1 12

Ya &

For long wavelength pertarbations and far from sata-
ration, the two additional terms in the denominator
are less than unity. Here we consider a cylindrical
volume with L, =L =5 pm, L =10 pm (V=250
{pm)) containing a condensate of N, = 5X 10
atoms at a temperatuse T =100 nK [21]. It follows
that k= O(1/L) =05 % 10° m™', and hence
k% /%, < 1. We can then expand Eq. (14) as

R*[l Do rlqbl’}
A= | 1= —k——1¢l3]. 15
oy 7, Ve (15

The inverse Foutier transform of Egq. (15} is an
aperator telation as

R(1+D'W Fl 12 6
w, = - - “i- 1
-~ Yu Y q‘, ( )

o

As we replace this expression into Egq. (3), the
operator V % acts on its right upon the space function
&. By doing this, we dexive at a closed equation for
¢ which reads as

o i 1{RI
a"‘g[@”]*a( "

(1

RD, T
- ?¢]¢+ V%
2y

7t
z

2v2

o

{1%, (17)
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where the square brackets contain the right hand side
of Eq. (1). We now wiite explicitly the GP terms
thus arciviag at the following CGL

. 1{RrRT V.
e 5("‘;:‘_% ......,.,.f;.m &

ROLI ik
[

2y} Zm
RI* g ”
—(-E“;;z—+ig)|¢|¢~ (18)

The dissipative terms of Eq. (18) represent respec-
tively: 1) difference between gain and losses, which
implies a threshold condition; i) a real diffusion
which implies a spread of any local perturbation; i}
2 teal saturation ierm which provides a density de-
pendent gain saturation.

4. Rescated CGL near threshold

We herewith list the numerical values as taken
from the experiment [21] or from Ref. {9]. We refer
10 a trap volume V=025 % 107'% m’; with a loss
rate v, =300 s7'. If we take the value O] I"=7
5=, then I'=I"¥=2x107"" m’s™'. Purther-
more, a reasonable estimate £or the BEC escape rate
toward the atom laser is [9] v, = 50 57!, Therefore
the threshold condition (gain = losses) is falfifled for
R =R, where

RI/7= % (19)
here B =~ 12 % 10%% m~%s™ ", corresponding o Ry =
RV = 3000 s™'. Finally we have for ¥Rb [2] g/% =
(dmfia,)/m= 048 x 167'* m’s™'. Furthermere,
the treatment here outlined, with the cubic approxi~
mation (Bgs. (14) and (15)) requires (| 1°T") /v, << 1,
which hoids for the Rb condensate up to N, = 100.
" We can now write the parametrized CGL Eg. (18)
in the dimensioniess form

$=eg+{1+ic)Vip—{1+ic) 1 ot%. (20)
where we have used the dimensionless time
=%l (21
and the dimensionless space coordinates

X ¥y z

L

(22)

where g, = —35.1 and the open BEC is in the unstable
_ 12 region; we will denote this experimental situation by
RD, I PR Li* BEC.

= ; =3%10-%m (23) referring o an open Li® BEC
XY,

is the characteristic length associated to the CGL
dissipative dynamics, and the dimensionless conden-
sated wave-function

RI?
2%,

Note that tilde has been dropped in Eq. (20). k
follows from Eq. (18) that

5, Numerical simulations

As we have shown in Section 4, the coefficients
of the CGL depend on the natore of the atoms
forming the open BEC and also depend on the
characteristic working parameters of the open BEC.
Let us discuss the space time dynamics of the den-
sity of the condensed phase [¢1%. To do this, we
proceed o the numerical integration of Eq. (20). The

131 = lal”. (24}

1{ RT 1({R integration is performed on a two dimensional do-
€= (—y—; - 1] =3 ( == 1] s (25) rnain. This corresponds fo a cross section of the 3-D
wic cigar shape where the condensation takes place. This

iyl is justified by the fact that , < @, ,@,. The simula-

€= s (26) tions are done on a 200X 200 (Rb) or 256 X 256
4 {1i*) grid starting with an initial Gaussian distribu-

2oy © tion at the center of the domain. The aumerical

€= SRTE (27} infegration code is based on.a semi-implicit scheme

are the significant parameters of Eq. (20). They are
pure numbers. The term —iV,,/& ¢ = —ic, ¢ in
Eq. (18} can be eliminated by a rotation transforma-
tion ¢ — pe %0 :

We notice that Bq. (20), derived by sound physi-
cal assurnptions, is far from being a purely conserva-
tive {GP) or purely dissipative {yeal Ginzburg Lan-
dau) equation, but it displays both characters.

However the Benjamin-FPeir instability condition
(103

e(~e)>1 (%)

is not met by ¥Rb {¢, =0.52, ¢, =2.05) and its
dissipative CGL is fully inside the stabie region.
Hence the addition of dissipative terms may add
interesting transient effects but does not lead t0
substantial qualitative changes with respect fo the GP
equation. Quite different is the case of "Li (¢, = 0.04,
;= —0.51). Indeed even though the values of ¢
and ¢, just listed give a stable dynamics, the fact
that the scattering length is negative may lead to an
instability if the parameters of the open BEC asc
slightly changed, e.g. if 7, is reduced by a factor 10
(which physically comesponds to a Li atom-laser
with weaker losses). In such a case, we get ¢, = 0.4

=10 ' 1500

g, 1. Open BEC of Rb: Time evolution of |#) using Eq. (20)
Wilh ¢, =052, c, =245 and £ =0.5. The time step s {4, =

(_)l). The inftial condition is & Gaussian. The figures are coded
“Sil{}% a grey scale {white corresponds to the maximum value of
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0.8

G.6

Fig. 2. Cuts of Joi° at =0, same parameters as for Fig. 1. The
dotted line corresponds to ¢ = 1, the dashed Hne is for r==10 and
the sclid line (¢ = 300) corresponds to the final stationary state.

in time with finite difference in space. The chosen
boundary conditions {at x= +L /2 and y=
+L,/2) are

72 —0-1(15) (29)

where n is the normal at the boundary. Eq. (29}
expresses the conrdition of an isctropic output flux of
the condensed BEC (in the ideal situation of zero-
gravity). The numerical coefficient on the right hand
side of Bq. (29) is the dimensionless zatio between ¥,
and the velocity modulas of the condensed atoms,
easily evaluated from the ground state solutions of
the harmonic oscillator [2]. In fact the ground state of
the condensate is not that of the harmonic oscillator,
because of the nonlinear term, but for the sake of the
computation this is a fair approximation. In Fig. 1
four snapshots of [¢{x, .01 are shown ar different
times for the Rb case (¢, =0.52, ¢, =205 and
£=1.5). The inital distribution evolves towards a
stable quasi-urtiform state. Fig. 2 displays three cross
section of Fig. 1 at different times, the solid line
corresponds to the final stationary state and we
observe the nearly upiform condensate on the overall
domain. For  uniform pump R, the balance between
source (uncondensed atom contribution) and sink
(boundary escape) eventually yislds a uniform con-
densate profile far from threshold.

Fig. 3 illustrates a quite different sitation: The
values are now ¢, =04, ¢,=—51 and £=05
which corresponds to a Li™ open BEC in the unsta-
ble region of use. The space-time chaotic dynamics
emerges after a short transient {z < 10). Fig. 4 con-
firms that |¢|° is no longer symmetric with respect
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1000

Fig. 3. Open BEC of Li © (eseape parameers adiusted to be in the
unsiable regime): Time evolution of [o6I° using Bq. (20) with
=04, ¢y =351 and £ 03,

to x =0 (the same hoids for the y-axis). Fig. 5 is
aimed to show the spatial decorrelation of the signal
when the condensate has entered the chaotic realme
The 1D spatial power spectrum of the I¢(x)
function is shown in the lower curve of Fig. 5., the
wpper curve (solid Lne) is calculated by averawmc
the power spectrum of the function lqb(x}§ over a
time interval from ¢ =500 until ¢= 1000 {taking a
sampling Hme &7 = 10) within which the dynamics
is statistically staticnary. The results ¢learly indicates
the large spatial decorrelation of the signal inside the

Fig. 4. Cuats of 1@} at y = 0, same parameters as for Fig. 3. The
Joted line corresponds to 1+ 1, the dashed line is for 7= 10 and
the sofid line (7 + 500} commesponds to a chaotic state.

Gl

it

Fig. 5. Spatiat power spectrum of |o(x, y=0,0F for Li*. The

Tower curve {dotted Tine) cotresponds to 7= 1. The upper curve

(solid lire} is catculsted by averaging the spatial power spectram

of 1(x,y = 0.0 between t=500 and 7= 1000 {by steps of
=100

chaotic regime. Indeed, it is well known that the
Fourier transform of a Gaussian function G«
e /7 is again a Gaussian function G oe™ *rod
w;th a,o,=1. On Fig. 3 it appears that the band-
width in the Fousier space is much larger in the
chaotic regime than for the initial d;smbuuon, which
means a decorrelation of [¢{x)® once the system
becomes chaotic.
To give a quantitative feeling, in the case of Li”,
we have reduced v, by a factor 10, which means that

the normalization length is increased by Vi0 with -
respect to Eg. (23), and it is {; =10 po. In the .

numerical calculations we have considered a trap of

linear size L =>3501. Since the ratio of the spectral -

widths between the chaotic and the initial spectra is

about 4 (estimated from Fig. 5), it results that the -

coherence length o, in space time chaos is ~ 1/4
the length of the initial Gaussian packet oy. As seen
from Fig. 4 oy =51, = 1/10L, hence o, = 1.21] =
1/40L. These numerical estimates agree with a den-
sitometric analysis of Fig. 3.

6. Discussion and conclusions

Kagan et at. [22] have discussed the collapse of a
BEC in "Li for a aumber of condensed atoms N

larger than the critical value N, that is,

3 (30)

erit lasi—

This relation for N, is obtained by equating .the ;
level spacing Aw in the trap to the interpaticle

interaction energy nnl gl=N/Vigl where g=
Awhla./m and V= al,. Ref. [22] stabilizes the GP
via a dissipative term comesponding to 3-body
recombination processes. This amounts to a correc-
tion corresponding to a 6th power term in ¢ in a free
energy potential. The dissipative equation of Ref.
[22] is then

§=—i[GP] - £lsl%
+ (pumping from the uncondensed portion).
(31)
In Bq. {20}, we have already treated the last term,
here expressed in words, by the Eneer et al. ap-
proach {9], Let us now compare the 5th power resl
damping eptering Eq. (31) with the 3th power real

damping of Eq. {20). The cubic term is of the form
G, ¢, where

RI?
Tyt

| = w (32)

Using the numerical values corresponding to the
¥R we obtain G, =48 57!, for "Li we have G, =
1920 s~'. The cubic rate (G,) is & combination of
the three characteristic rates of an open BEC. In a
similar way we can introduce the rate G = £|a1°,

" Taking the mumnerical values provided in Ref. [22] we
" have the following ratios between the two dissipation

rales

G {430 for “Rb

33
Gy 2X10* for Li (33)

This result clearly indicates that for an open BEC,
the 3-body recombination is negligible with respect

to the saturation cubic term that comes from the

coupling between the condensed and uncondensed

- phase of the open BEC.

To summarize, in this paper we have shown that
in the framework of an atom-laser approach via two

- toupled equations, one for the uncondensed phase

and the other one for the condensed phase, addition

. of a diffusion term for the uncondensed atoms and
: application. of a proper adiabatic elimination proce-

dure leads to 2 CGL dynamical equation for an open
BEC. In the case of negative scattering length, a
suitzble adjustment of the escape rate implies enter-
ing the unstable regime of the CGL dynamics. Fur-

" thermore, within the chosen ranges of the parameters
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(g,¢,,c,), the 3-bedy recombination processes have
a negligible mfluence.

Note added in proof

Notice that the Benjamin-Feir instability means
generically that the k=9 (Jong wavelength) pertur-
bation modes is unstable {10]. The dissipative case
discussed by us, leading o space-time chaos, is
within the framework of Refs. [11,12k however the
initial phenomenon is a modujational instability
without chaos, as discussed for the case of two
interacting Bose condensates in Ref. [23].

Acknowledgernents

The authors acknowledge E. Arimondo, T. Han-
sch, L. Pitaevskii and the BEC growp at LENS
Firenze for fruitful discussions. T.B. was partially
supported by a EU Network grant (FMRXCT960010)
‘Nonlinear dynamics and statistical physics of spa-
tially extended systems’ and by the Belgian Pro-
gramme on Interuniversity Poles of Attraction (PA3
04-6) initiated by the Belgian State Federal Office of
Scientific, Technical and Cultural Affairs. This work
was partially supported by INFM through the Ad-
vanced Research Project CAT.

References

{1] EP. Gross, Nuovo Cimento 20 {1961) 454; L.P. Pitaevskii,
Zh. Eksp. Teor. Fiz. 40 {1961) 646 [Sov. Phys. JETP 13
{19613 4511,

(2] F. Daifove, 8. Giorgini, L.P. Pitaevskii, $. Stringari, Rev.
Mod. Phys. 71 (1999) 463,

{31 M.H. Anderson, I.R. Ensher, M.R. Matthews, C.E. Wieman,
E.A. Comell, Science 269 (1595} 198,

4} CC. Bradley, C.A. Sackent, 1.1 Tollert, R.G. Hulet, Phys.
Rev. Lett. 75 (1995) 1687,

[5] K.B. Davis, M.O. Mowes, M.R. Andrews, N.I van Druten,
D.8. Durfes, DM, Kurn, W, Xetterle, Phys. Rev, Lew. 75
{1993} 3969.

{8] M.O. Mewes, ML.E. Andrews, D.M. Kum, D.S. Durfee, C.G.
Townsend, W. Keuetle, Phys. Rev, Ler, 78 (1997) 852,

[7] E.W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerson,
$S.L. Roliston, W.ID. Philips, Science 223 (1999} 1706.

[8] L. Bloch, T.W. Hansch, T. Esslinger, Phys. Rev. Lew. 82
(1998) 3003.



