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L QUANTUM SUPERPOSITION AND DECOHERENCE

There is a basic difference between the predictions of quantum theory for
quantum systems that are closed (isolated) and open (interacting with their
environments.) In the case of a closed system, the Schrédinger equation and the
superposition principle apply literally. In contrast, the superposition principle is
not valid for open quantum systems. Here the relevant physics is quite different,
as has been shown by many examples in the context of condensed matter physics,
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quantum chemistry, and so on. The evolution of open quantum systems has to be
described in a way violating the assumption that each state in the Hilbert space of
a closed system is equally significant. Decoherence is a negative selection
process that dynamically eliminates nonclassic states.

The distinguishing feature of classic systems, the essence of ‘“‘classic
reality,” is the persistence of their properties—the ability of systems to exist in
predictably evolving states, to follow a trajectory which may be chaotic, but is
deterministic. This suggests the relative stability—or, more generally, predict-
ability—of the evolution of quantumn states as a criterion that decides whether
they will be repeatedly encountered by an observer and can be used as
ingredients of a “classic reality.” The characteristic feature of the decoherence
process is that a generic initial state will be dramatically altered on a
characteristic decoherence time scale: Only certain stable states will be left on
the scene.

Quantum measurement is a classic example of a situation in which a
coupling of a macroscopic quantum apparatus A and a microscopic measured
system S forces the composite system into a correlated, but usually exceedingly
unstable, state. In a notation where [Ag) is the initial state of the apparatus and
[Y) the initial state of the system, the evolution establishing an A-S correlation
is described by

) |Ao) = ;aklﬁkﬂfld — D wlow)ldr) = (@) (1)
k

An example is the Stern-Gerlach apparatus. There the states |oy) describe
orientations of the spin, and the states |A¢) are the spatial wavefunctions centered
on the trajectories corresponding to different eigenstates of the spin. When the
separation of the beams is large, the overlap between them tends to zero
({Ax|AL) ~ 8uw). This is a precondition for a good measurement. Moreover,
when the apparatus is not consulted, A-S correlations would lead to a mixed
density matrix for the system S:

pe =D loul’ow)(oe] = Tr(®) (D] (2)
k

However, this premeasurement quantum correlation does not provide a sufficient
foundation to build a correspondence between the quantum formalism and the
familiar classic reality. It only allows for Einstein—Podolsky-Rosen quantum
correlations between A and S, which imply the entanglement of an arbitrary
state—including nonlocal, nonclassic superpositions of the localized status of
the apparatus (observer)—with the corresponding relative state of the other
system. This is a prescription for a Schrodinger cat, not a resolution of the
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measurement problem. What is needed, therefore, is an effective superselection
rule that “outlaws” superpositions of these preferred “pointer states.” This rule
cannot be absoluie: There must be a time scale sufficiently short, or an
interaction strong enough, to render it invalid, because otherwise measurements
could not be performed at all. Superselection should become more effective
when the size of the system increases. It should apply, in general, to all objects
and allow us to reduce elements of our familiar reality—including the spatial
localization of macroscopic system—from Hamiltonians.

Environment-induced decoherence has been proposed to fit these require-
ments [1]. The transition from a pure state |®)(®| to the effectively mixed pyg
can be accomplished by coupling the apparatus A to the environment €. The
requirement to get rid of unwanted, excessive, EPR-like correlations (1) is
equivalent to the demand that the correlations between the pointer states of the
apparatus and the measured system ought to be preserved in spite of an
incessant measurement-like interaction between the apparatus pointer and the
environment. In simple models of the apparatus, this can be assured by
postulating the existence of a pointer observable with eigenstates (or, more
precisely, eigenspaces) that remain unperturbed during the evolution of the open
system. This “nondemolition” requirement will be exactly satisfied when the
pointer observable O commutes with the total Hamiltonian generating the
evolution of the system:

[(H + Hin), 0] = 0 (3)

For an idealized quantum apparatus, this condition can be assumed to be satisfied
and—provided that the apparatus is in one of the eigenstates of O—1leads to an
uneventful evolution:

|Ak) o) — [Ax)lex(t)) (4)

However, when the initial state is a superposition corresponding to different
eigenstates of O, the environment will evolve into an JA;)-dependent state:

DA Jleo) = > ulAn)le(r)) (5)
k k

The decay of the interference terms is inevitable. The environment causes
decoherence only when the apparatus is forced into a superposition of states,
which are distinguished by their effect on the environment. The resulting
continuous destruction of the interference between the eigenstates of O leads to
an effective environment-induced superselection. Only states which are stable in
spite of decoherence can exist long enough to be accessed by an observer so that
they can count as elements of our familiar, reliably existing reality.



202 F. T. ARECCHI AND A. MONTINA

Effective reduction of the state vector follows immediately. When the
environment becomes correlated with the apparatus,

|)]eo) — D culA)ow)en(r) = [¥) (6)
k

but the apparatus is not consulted (so that it must be traced out), we have

Pas = THWH(T| =D Jou A} (Axl [0 (o )
k

Only correlations between the pointer states and the corresponding relative states
of the system retain their predictive validity. This form of p, follows, provided
that the environment becomes correlated with the set of states {|A;)} (it could be
any other set) and that it has acted as a good measuring apparatus, so that
(ex(2)|ew (£)) = duwr (the states of the environment and the different outcomes are
orthogonal).

Let us consider a system S ruled by a Hamiltonian Hy and coupled to the
environment through the term

H = vxE (8)

where v is the coupling strength, x is a coordinate of the system, and E is an
environment operator. As we trace the overall density operator over an ensemble
of environments with temperature 7T, the system’s density matrix in the
coordinate representation, p(x,x’), evolves according to the following master
equation [2]:

dp 1 kT
= i lHo,pl — v(x = ¥)(8 — 80)p =z (x—=¥)’p (9)

where 1 := v?/2, and y := 1/2m is the drift coefficient that rules the evolution
of the first moments. “Negative selection” consists of the rapid decay of the off-
diagonal elements of p(x,x'). Indeed, for i — 0, the last term on the right-hand
side of (9) prevails, providing the solution

Dl ,0) = o, X, Oexp (=05 (x = ) (10

With Ax =x—x/, we see that an initial offset p(x,x’,0) decays after a

decoherence time
1 s\’
= {— 11
1) v ( Ax) ( )
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where
A 7]
DB p 2mkT ( )

is the thermal de Broglie length. At length scales Ax 3> App, we have 1p < 1/7,
such that the system decoheres rapidly and then continues with the standard
Brownian decay on the time scale 1/y.

II. OPTICAL IMPLEMENTATION OF MESOSCOPIC
QUANTUM INTERFERENCE

The possibility of interference between macroscopically distinct states (the
so-called Schrodinger cats [3]) has been suggested by Leggett [4-6] for the case
of two opposite magnetic flux states associated with a SQUID.

Recently, two experiments on Schrodinger cats have been demonstrated. In
the first one [7] the two different states |+ o) are coherent states of the
vibrational motion of a ?Be*ion within a one-dimensional ion trap. The
maximum separation reported between the two states corresponds to about
2|at| = 6. In the second one [8] the two different states are coherent states of a
microwave field, with a maximum separation up to about 3.3.

An optical experiment would consist of generating the superposition of two
coherent states of an optical field and detecting their interference. Generating a
superposition of coherent states requires some nonlinear optical operations, and
different proposals have been formulated, based respectively on ¥ and x?
nonlinearities. In the first one [9] a coherent state, injected onto a %) medium,
evolves toward the superposition of two coherent states 180° out of phase with
each other. However, for all practically available %) values, the time necessary
to generate the superposition state, which scales as 1 /x<3), is always much
longer than the decoherence time. We recall that for a superposition
(Joo) + | — &))/+/2 of two coherent states, the decoherence time is given by
the damping time of the field, divided by the square distance (4]o/”) [9].

The second proposal, by Song, Caves, and Yurke (SCY) [10], consists of an
optical parametric amplifier (OPA) pumped by a coherent field, generating an
entangled state of signal (S) and readout (R) modes. Passing the § mode through
a further OPA, and measuring its output field conditioned upon the photon
number on the R mode, should yield interference fringes, associated with the
coherent superposition of two separate states. However, the fringe visibility is
extremely sensitive to the R detector efficiency, and as a result the SCY
interference has not been observed so far.

We have recently introduced a modified version of SCY, whereby fringes can
still be observed at the efficiencies of currently available detectors [11]. The
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price to be paid is a very low count rate, which is, however, compensated for by
the use of a high-frequency pulsed laser source. Our setup is shown in Fig. 1.

Choosing the back-evasion condition of Ref. 12 it can be shown that the state
of the two field modes at the output of the first OPA apparatus is

Ny = e~ TXsTr 10, 0) (13)

where T = 2sinh (), r being proportional to the product of the pump laser
amplitude and the nonlinear susceptibility %) of the parametric amplifier [13],
and Xg = (as +ag)/V2,Yr = (ar — &)/ (iV2).

i a

Laser i {

i

1 M

i |

® H i

! i

! i

i M

SHG i b !

w
\3\2“) PBS

“71 oPA  —N—t——1 OPA f—
S t

P ettt

R ARl
ot
NI aE
|
OPA
LO
D
D

~r— QGate

Figure 1. Layout of the proposed experiment: SHG, second harmonic generation; OPA, optical
parametric amplifiers (including polarization rofators); PBS, polarizing beam splitter; R, readout
channel; S, signal channel; D, detectors; LO, local oscillator for homodyne. The homodyne detection
is performed via a balanced scheme. The dashed-dotted box on the S channel (magnified in the
inset) denotes the optional insertion of a Mach~Zehnder interferometer with two inputs, a and ¢, and
one output, b. Branch ¢ include a phase adjustment in order to build the superposition state given by
Eq. (25). When no interferometer is inserted, a coincides with b.
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In the representation of the eigenstates |xs, yg) of Xs e Y, |\) is written as
\II(XS)yR) = <XS»)}R|\IJ> = e#iTXS)’R\zlo(x&yR) (14}

where (x5, yr) is the wavefunction of the vacuum state.
By a photodetection measurement on mode R, we obtain the (not
normalized) state \lli of mode S conditioned upon the photon number 7 on K,

that is,

(0]
2(xs) = J dyr\s(xs, yr)V, ) (15)
where n is the photon number detected on R and \r,,(yz) is the number state [n) in
the yp representation of the R mode.

The integral

v o]

P = | NP (16)

00

gives the probability that n photons are in mode R.
The probability distribution of x,, conditioned on the photon number in mode

R, is [13]

|5 (xs)
Plxsln) = =56 |
(2n)N(1 + T2/2)(2”+1)/2 o~ (1+T2/2)2
- !/ 2p!(2n — 1) ¥s ¢ ' )

Both the dependence of P(r) upon n [Eq. (16)] and the dependence of P(x[n)
upon x [Eq. (17)] for n between 0 and 10 have been visualized in Figs. 1 and 2 of

Ref. 11.

For n > 0 the conditional probability (17) is approximated by the sum of two
Gaussians whose distance increases with n. The width of each of the two peaks
is smaller than that corresponding to a coherent state. SCY suggested to increase
the peak separation by passing the $ signal through a degenerate OPA, described
by the evolution operator

Ui(r) = e " (@sts=a35) (18)

The output of this second OPA consists of the superposition of two near-
coherent states.
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When measuring the quadrature Yg at the output of the second OPA for a
fixed photon number n detected on the R channel, interference fringes should
appear as a result of the superposition.

The probability distributions P(ys|n) of Ys for n that goes from 0 to 10 and
for T =3 are reported in Fig. 5 of Ref. 11. Of course, if we sum up several of
them with their weights P(n), the interference fringes cancel out. From this fact,
it is easily understood how critical the quantum efficiency of the R
photodetector is.

Let us suppose that the R photodetector has an efficiency Mg < 1. For the
time being, we refer to a single photomultiplier detector. Selecting the laser
wavelength, the quantum efficiency of the photocatode can be ng = 0.05. If n
photons impinge on it, the probability of detecting m photons is given by the
binomial distribution

P(mln) = (" )ng(1 = ne)"™" (19)

Thus, the probability of ys conditioned by the detection of m photons on R is

given by

Py (yslm) = P(ys|n)P(n|m)

nznm

P(ys|n)P(m|n)P(n)
:Z : N(m) (20)

n>m

where P(n) is given by Eq. (16) and the normalization factor in the denominator
is N(m) = 3, P(m|n)P(n).

The Py, are reported in Fig. 2, using the parameters chosen in [13]1 (T = 3),
for some values of the efficiency and for m that goes from 1 to 5. With ng = 0.7
the fringes practically disappear, and therefore no superposition is observed.

The last term of Eq. (20), based on Bayes theorem, says that in order to get
the distribution of yg, conditioned by the detection of m photons, we must
consider all distributions P(ysln) for n > m, each one weighted by the
probability P(n|m) of n photons when m of them have been counted. With the
parameters considered in Ref. 13, P(n|4) has the behavior reported in Fig. 3a
(we have set m = 4). The uncertainty on n implies a reduction of the fringe
visibility on ys.

We aim at reducing the width of the distribution P(n|m), based on the
available efficiency of commercial detectors. The only parameter that we can
change is the gain T of the first OPA. Reducing the value of gain 7', the
distribution P(n) decays faster for increasing n. In Fig. 3b we have reported
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Figure 2. Probability distribution Py, (ys|m) of ys for T = 3 and different efficiencies of the
readout detector:n, = 0.7 (dashed line), np = 0.5 (solid line).

P(n|4) for ng = 0.3 and for T = 2, 1, and 0.4. In this last case we note a sharp
reduction of the probability for n > m; therefore if the detector counts m, there
is a very small probability of having n > m photons.

To confirm such a guess, we report in Fig. 4 the distributions Py, (ys|m) for
some values of 7" and for n, = 0.3.

The very remarkable fact is that for 7 = 0.4, the fringe visibility is not
practically affected by lowering the quantum efficiency. An alternative detection
scheme replaces the single photomultiplier with an array of single-photon
detectors [14,15]. In such a case the binomial distribution (8) no longer holds,
and one should instead recur to Eq. (11) of Ref. 12. This change does not affect
the fringe visibility.

Lowering T has no practical influence on the separation of the two near-
coherent states at the exit of the second OPA for the same photon number m in
mode R.

However, there is a price to pay, indeed: A small T lowers the probability of
photon detection on mode R. In Fig. 5 of Ref. 9 we have reported the
distribution N(m), for ng = 0.05 and T = 0.4. N(4) is less than 107'°; thus
even if we utilize a pulsed laser with frequency 80 MHz and select m = 4, we
have less than one favorable event every 100 seconds.

Thus, we must compromise between the fringe visibility and the counting
rate.
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Figure 4. As Fig. 2 but with fixed np = 0.3, T = 1 (dashed line), and T = 0.4 (solid line).

The Ys quadrature is measured via a homodyne detector. The mode S is
superposed to a reference field at frequency ®, with appropriate phase, and we
measure the intensity of the superposition.

The probability that the S detector counts N photons in the resulting field, if
its efficiency is 1, is given by
2

PO(N): (21)

J' OO(M)’S)W()’S —A) dys

00

Accounting for the photodetector efficiency Mg < 1, the count probability
becomes

PI) = 3 P (V)POMIN) (22)
N>M
where
P) = () (1 =)™ (23)

In Fig. 5a we report the distributions P} (M) for some values 1 of the homodyne
detector efficiency in the case of a superposition of two coherent states of
opposite phase with separation 2ot} = 2+/5. For mg = 0.8 the fringes are barely

visible.
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Figure 5. Photocount distribution after the homodyne detection for an input field of two

coo:;rem states | £ o) wh;re Jaf* = 5 for different homodyne detector efficiencies Ny and with a pre-
. set at different gains I: (a) /=1 (no pre-OPA), (b) [=10.3, (¢) | =0.15. The different
horizontal scales correspond to different 1O intensity for the three cases.
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Figure 5. (Continued)

We expect that use of PIN diodes should provide a high detection efficiency
[16]. However, we devise a way to improve the fringe visibility as if the
efficiency were very close to unity.

P(M|N) has the effect of rounding off the distribution P,(N). By spreading
the distribution Po(N), it becomes less sensitive to this roundoff. This can be
done by incorporating in the detection system a pre-OPA whose role consists in
separating the fringes.

Indeed, the decoherence rate is proportional to the square root of the distance
between the two states in the phase plane; thus an auxiliary OPA before the
homodyne, with gain less than unity for the xg quadrature, reduces the
separation and therefore reduces the effect of the losses.

If 1(<1) is the shrinking factor for xs in the auxiliary OPA, then the
probability P,(N) of Eq. (21) changes to

-+00 2
j (Nlys)Vli(s — A)] dvs (24)

00

P,(N) =

The corresponding distributions PJ (M) are reported for [ =0.3 and 0.15 in
Figs. 5b and 5c, respectively, for the case ot = 5. With = 0.3 and ng = 0.7 the
fringes are well visible, confirming the validity of the proposed strategy.
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Notice that Fig. 5 is evaluated for a photon number around 100, for sake of
demonstration; in fact, the experiment is carried with a much higher LO
intensity.

To summarize, the opposite roles of second and third OPA consist, res-
pectively, of putting the two states of the superposition away and then
reapproaching them. This means that a measurement done in the intermediate
space region would resolve two widely separate states. The setup here proposed
is an optical implementation of the ideal experiment suggested for the same
purpose by Wigner in the case of two spin 1/2 particles, by use of two Stern—
Gerlach apparatuses [17).

II. “WHICH PATH” EXPERIMENT WITH A
LARGE PHOTON NUMBER

The availability of an intermediate spatial region suggests a way of transforming
the phase-space separation of the two states of the superposition into a real space
separation. Precisely, we might insert a Mach-Zehnder interferometer between
second and third OPA. The two inputs of the first beam splitter are fed,
respectively, by the superposition state (Jo) + | — @))/+/2 and by a coherent state
ly) with |y| = |o] and adjustable phase. By a suitable choice of this phase, the two
separate arms A and B of the interferometer have a field given by the
superposition

1Bi)al0)5 + 10)41B2) 5 (25)
where [B,] = [B,] = \/§|0‘|-

Thus, a photodetection performed on the two arms of the interferometer
would provide a photon number 2|oc}2 on one arm and O on the other or
viceversa; however, if no measurement is performed within the interferometer,
the homodyne system at the output will detect an interference between the two
alternative paths. Adjusting the two interference arm lengths, we recover the
input states at interferometer output. This final measurement is a “which path”
experiment, upgraded to a packet of 2]0(|2 photons. So far this experiment had
been performed with only one photon, whereas in our setup it is scaled to a large
photon number.

The corresponding experiment is being carried at the National Institute of
Applied Optics (INOA) in Florence, Italy.

A first run, with an Nd:YAG mode locked laser at A = 1.06 pm, was
hampered by the low efficiency of available avalanche Si detectors at that
wavelength. An improved version, using a Ti:Sa laser at A = 800 nm, provides a
much better matching within the peak efficiency of the Si detectors. Preliminary
reconstructions of the Wigner function of the superposition state have already
tested the soundness of the proposed scheme.
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