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COMPLEXITY OF PERCEPTUAL PROCESSES  

F. TITO ARECCHI 
Department of Physics University of Firenze, Italy 

At the borderline between neuroscience and physics of complex phenomena, a  new paradigm is 
under investigation ,namely    feature binding. This terminology denotes how a large collection of 
coupled neurons combines external signals with internal memories into new coherent patterns of 
meaning. An external stimulus spreads over an assembly of coupled neurons, building up a 
corresponding collective state. Thus, the synchronization of spike trains of many individual neurons 
is the basis of a coherent perception. Based on recent investigations, a novel conjecture for the 
dynamics of single neurons and, consequently, for neuron assemblies has been  formulated. 
Homoclinic chaos is proposed as the most  suitable way to code information in time by trains of 
equal spikes occurring at apparently erratic times; a new quantitative indicator, called propensity ,is 
introduced to select the most appropriate neuron model. In order to classify the set of different 
perceptions, the percept space is given a metric structure by introducing a distance measure between 
distinct percepts. The distance in percept space is conjugate to the duration of the perception in the 
sense that an uncertainty relation in percept space is associated with time limited perceptions. Thus 
coding of different percepts by synchronized spike trains entails fundamental quantum features . It is 
conjectured that they are related to the details of the perceptual chain rather than depending on 
Planck’s action. This is where the abstract should be placed. It should consist of one paragraph 
giving a concise summary of the material in the article below. Replace the title, authors, and 
addresses with your own title, authors, and addresses. You may have as many authors and addresses 
as you like. It is preferable not to use footnotes in the abstract or the title; the acknowledgments of 
funding bodies etc. are to be placed in a separate section at the end of the text. 

1 Feature binding 

1.1. Neuron synchronization 

It is by now  established that a holistic perception emerges, out of separate stimuli 
entering different receptive fields, by synchronizing the corresponding spike trains of 
neural action potentials [Von der Malsburg, Singer].  

Action potentials play a crucial role for communication between neurons 
[Izhikevich]. They are steep variations in the electric potential across a cell’s membrane, 
and they propagate in essentially constant shape from the soma (neuron’s body) along 
axons toward synaptic connections with other neurons. At the synapses they release an 
amount of neurotransmitter molecules depending upon the temporal sequences of spikes, 
thus transforming the electrical into a chemical carrier. 

As a fact, neural communication is based on a temporal code whereby different 
cortical areas which have to contribute to the same percept P synchronize their spikes. 
Limiting for convenience the discussion to the visual system, spike emission in a single 
neuron of the higher cortical regions results as a trade off between bottom-up stimuli 
arriving through the LGN (lateral geniculate nucleus) from the retinal detectors and  
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threshold modulation due to top-down signals sent as conjectures by the semantic 
memory. This is the core of ART (adaptive resonance theory [Grossberg]) or other 
computational models of perception [Edelman and Tononi]  which assume that a stable 
cortical pattern is the result of a Darwinian competition among different percepts with 
different strength. The winning pattern must be confirmed by some matching procedure 
between bottom-up and top-down signals. 

1.2. Perceptions , feature binding and Qualia 

The role of elementary feature detectors has been extensively studied  in the past 
decades [Hubel]. By now we know that some neurons are specialized in detecting 
exclusively vertical or horizontal bars, or a specific luminance contrast, etc. However the 
problem arises: how elementary detectors contribute to a holistic (Gestalt) perception? A 
hint is provided by [Singer]. Suppose we are exposed to a visual field containing two 
separate objects. Both objects are made of the same visual elements, horizontal and 
vertical contour bars, different degrees of luminance, etc. What are then the neural 
correlates of the identification of the two objects? We have one million fibers connecting 
the retina to the visual cortex, through the LGN. Each fiber results from the merging of 
approximately 100 retinal detectors (rods and cones) and as a result it has its own 
receptive field. Each receptive field isolates a specific detail of an object (e.g. a vertical 
bar). We thus split an image into a mosaic of adjacent receptive fields. 

Now the “feature binding” hypothesis consists of assuming that all the cortical 
neurons whose receptive fields are pointing to a specific object synchronize the 
corresponding spikes, and as a consequence the visual cortex organizes into separate 
neuron groups oscillating on two distinct spike trains for the two objects(fig.1) 

Direct experimental evidence of this synchronization is obtained by insertion of 
microelectrodes in the cortical tissue of animals just sensing the single neuron [Singer]. 
Indirect evidence of synchronization has been reached for human beings as well, by 
processing the EEG (electro-encephalo-gram) data [Rodriguez et al.].  

Based on the neurodynamical facts reported above, we can understand how this 
occurs [Grossberg]. The higher cortical stages where synchronization takes place have 
two inputs. One (bottom-up) comes from the sensory detectors via the early stages which 
classify elementary features. This single input is insufficient, because it would provide 
the same signal for e.g. horizontal bars belonging indifferently to either one of the two 
objects. However, as we said already, each neuron is a nonlinear system passing close to 
a saddle point, and the application of a suitable perturbation can stretch or shrink the 
interval of time spent around the saddle, and thus lengthen or shorten the interspike 
interval. The perturbation consists of top-down signals corresponding to conjectures 
made by the semantic memory (fig.2). 
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Fig. 1: Feature binding: the lady and the cat are respectively represented by the mosaic of empty and filled 
circles, each one representing the receptive field of a neuron group in the visual cortex. Within each circle the 
processing refers to a specific detail (e.g. contour orientation). The relations between details are coded by the 
temporal correlation among neurons, as shown by the same sequences of electrical pulses for two filled circles 
or two empty circles. Neurons referring to the same individual (e.g. the cat) have synchronous discharges, 
whereas their spikes are uncorrelated with those referring to another individual (the lady) [from Singer]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 ART = Adaptive Resonance Theory. Role of bottom-up stimuli from the early visual stages an top-down 
signals due to expectations formulated by the semantic memory. The focal attention assures the matching 
(resonance) between the two streams [from Julesz]. 

 
In other words, the perception process is not like the passive imprinting of a camera 

film, but it is an active process whereby the external stimuli are interpreted in terms of 
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past memories. A focal attention mechanism assures that a matching is eventually 
reached. This matching consists of resonant or coherent behavior between bottom-up and 
top-down signals. If matching does not occur, different memories are tried, until the 
matching is realized. In presence of a fully new image without memorized correlates, 
then the brain has to accept the fact that it is exposed to a new experience.  

Notice the advantage of this time dependent use of neurons, which become available 
to be active in different perceptions at different times, as compared to the computer 
paradigm of fixed memory elements which store a specific object and are not available 
for others (the so called “grandmother neuron” hypothesis). 

We have above presented qualitative reasons why the degree of synchronization 
represents the perceptual salience of an object. Synchronization of neurons located even 
far away from each other yields a space pattern on the sensory cortex, which can be as 
wide as a few square millimeters, involving millions of neurons. The winning pattern is 
determined by dynamic competition (the so-called “winner takes all” dynamics). 

This model has an early formulation in ART and has been later substantiated by the 
synchronization mechanisms. Perceptual knowledge appears as a complex self-
organizing process.  

 
Naively, one might expect that a given “qualia”, that is, a private sensation as e.g. 

the red of a Titian painting, is always coded by the same sequence of spikes. If so, in a 
near future the corresponding information could be retrieved by a high resolution 
detector, and hence a Rosetta stone could be established between the spike sequences and 
the qualia. Such a naive expectation which would lead to a world without privacy, is 
altogether wrong for the following reasons. After the initial experience of that qualia, the 
first time one has seen that Titian, any further repetition of that experience, either by 
memory recollection or by re-watching the painting occurs in presence of new 
experiential elements (one has become older, his/her store of memories has drastically 
mutated) and these novelties contribute to feature binding by a modified synchronization 
pattern. Evidence of such a fact has been established by Freeman [Freeman] reporting the 
synchronization pattern of the olfactory bulb of a rabbit, recorded by a large number of 
electrodes; as the same odor is presented twice, with an intermediate odor in between, the 
two patterns are all together different, even though the animal behavior hints at the same 
reaction. Freeman’s experiment is contrasted by the fact that some olfactory neurons of 
the locust yield the same bursts of spikes for the same odor [Rabinovich et al.]. 
Presumably, lower animals as locusts  have a much smaller semantic repertoire than 
rabbits or humans, and hence for them the dream of the Rosetta stone has some validity. 

2 Homoclinic chaos, synchronization and propensity 

Let us model the neurodynamics of spike formation  
As for the dynamics of the single neuron, a saddle point instability separates in parameter 
space an excitable region, where axons are silent, from a periodic region, where the spike 
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train is periodic (equal interspike intervals). If a control parameter is tuned at the saddle 
point, the corresponding dynamical behavior (homoclinic chaos) consists of a frequent 
return to the instability [Allaria]. This manifests as a train of geometrically identical 
spikes, which however occur at erratic times (chaotic interspike intervals). Around the 
saddle point the system displays a large susceptibility to an external stimulus, hence it is 
easily adjustable and prone to respond to an input, provided this is at sufficiently low 
frequencies; this means that such a system is robust against high frequency noise as 
discussed later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3  Schematic view of the phase space trajectory approaching the saddle S and escaping from it. Chaos is due 
to the shorter or longer permanence around S; from a geometrical point of view most of the orbit P provides a 
regular spike. 

 
Such a type of dynamics has been recently dealt with in a series of reports that here I 
recapitulate as the following chain of linked facts. 

1) A single spike in a 3D dynamics corresponds to a quasi-homoclinic trajectory 
around a saddle focus SF (fixed point with 1 (2) stable direction and 2 (1) 
unstable ones); the trajectory leaves the saddle and returns to it (Fig.3).We say 
“quasi-homoclinic” because, in order to stabilize the trajectory away from SF, a 
second fixed point, namely a saddle node SN, is necessary to assure a 
heteroclinic connection. The experiment on a CO2 laser confirms this 
behavior(Fig.4) 

H OM O CLIN IC CH AO S
through saddle connection in 3D

Chaos α < γ
Periodic stable oscillations α = γ

Susceptibility χ
χ= response/stim ulus

-easy synchronization : external forcing, DSS, NIS 
-bursting
-inform ation carrier Telecom unication

neuronal dynam ics
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Fig.4  Experimental time series of the laser intensity for a CO2 laser with feedback in the regime of homoclinic 
chaos. (b) Time expansion of a single orbit. (c) Phase space trajectory built by an embedding technique with 
appropriate delays [from Allaria et al.]. 

 
2) A train of spikes corresponds to the sequential return to, and escape from, the 

SF. A control parameter can be set at a value BC for which this return is erratic 
(chaotic interspike interval). As the control parameter is set above or below BC, 
the system moves from excitable (single spike triggered by an input signal) to 
periodic (yielding a regular sequence of spikes without need for an input), with 
a frequency monotonically increasing with the separation �B from BC 
[Meucci]. 

3) Around SF , any tiny disturbance provides a large response. Thus the 
homoclinic spike trains can be synchronized by a periodic sequence of small 
disturbances (Fig. 5). However each disturbance has to be applied for a minimal 
time, below which it is no longer effective; this means that the system is 
insensitive to broadband noise, which is a random collection of fast positive and 
negative signals[Zhou et al].  

4) The above considerations lay the floor for the use of mutual synchronization as 
the most convenient way to let different neurons respond coherently to the same 
stimulus, organizing as a space pattern. In the case of a single dynamical system, 
it can be fed back by its own delayed signal. As the delay is long enough the 
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system is decorrelated with itself and this is equivalent to feeding an 
independent system. This process allows to store meaningful sequences of 
spikes as necessary for a short term memory [Arecchi et al.2002]. 

 
 

 
 
 
 
Fig. 5. Left:  experimental time series for different synchronization ratios induced by periodic changes of the 
control parameter. (a) 1:1 locking, (b) 1:2, (c) 1:3, (d) 2:1 .  Right: when the system is not able to spike for each 
period of the driver, a phase slip (one spike less or more) occurs, it is a jump of +/- 2π if the interspike interval 
is normalized to 2π. The rate of +/- phase slips  increases with the offset of the driving frequency from the 
natural frequency (associated with the average interspike interval of the free system). 

 
5) Several neuron models (integrate-and-fire, Hodgkin-Huxley, FitzHugh-

Nagumo, Hindmarsh-Rose ) have  been used by different investigators. We  
have introduced the propensity to synchronization as a quantitative indicator of 
how easy is for a chaotic system to recognize an external input (Fig. 6) [Arecchi 
et al 2003] 

6) In presence of localized stimuli over a few neurons, the corresponding 
disturbances propagate by inter-neuron coupling ( either excitatory or 
inhibitory); a synchronized pattern is uniquely associated with each stimulus; 
the degree of mutual synchronization is measured by the disappearance of phase 
slips, or defects in a space-time fabric [Leyva et al.]. 

 

Phase slips

15
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Fig.6 The coherence parameter R is defined as the ratio between the average ISI (interspike interval) and its 
r.m.s. fluctuation. R is unity for a fully chaotic system and tends to infinity for a periodic system. Here we plot 
in log scale the ratio between R for a driving periodic disturbance of 1% to a control parameter and Rfree for the 
free system, at different frequencies ω away from the natural one ω0 (average of the chaotic spiking in the 
unperturbed system), For HC (circles) the ratio is 30 at ω0 and it goes up to 104for higher frequencies; for the 
Lorenz system(squares) the ratio stays flat to 1. We thus take this ratio as a quantitative indicator of the 
propensity to synchronization 

 
These facts have been established experimentally and confirmed by a convenient model 
in the case of a class B laser with a feedback loop which readjusts the amount of losses 
depending on the value of the light intensity output[Arecchi 1987 b]. 
I here recall the classification widely accepted in laser physics. Class A lasers are ruled 
by a single order parameter, the amplitude of the laser field, which obeys a closed 
dynamical equation; all the other variables having much faster decay rate, thus  adjusting 
almost instantly to the local field value. Class B lasers are ruled by two order parameters, 
the laser field and the material energy storage providing gain; the two degrees of freedom 
having comparable characteristic times and  behaving as activator and inhibitor in 
chemical dynamics [Arecchi 1987a]   
 
 The above listed facts hold in general for any dynamical system which has a 3-
dimensional sub-manifold  separating a region of excitability from a region of periodic 
oscillations: indeed, this separatrix has to be a saddle focus. 

3 Time code in neural information exchange 

 
How does a synchronized pattern of neuronal action potentials become a relevant 
perception?   
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Not only the different receptive fields of the visual system, but also other sensory 
channels as auditory, olfactory, etc. integrate via feature binding into a holistic 
perception. Its meaning is “decided” in the PFC (pre-frontal cortex) which is a kind of 
arrival station from the sensory areas and departure for signals going to the motor areas. 
On the basis of the perceived information, motor actions are started, including linguistic 
utterances [Rodriguez et al.].  
Sticking to the neurodynamical level, and leaving to psychophysics the investigation of 
what goes on at higher levels of organization, we stress here a fundamental temporal 
limitation. 
Taking into account that each spike lasts about 1 msec, that the minimal interspike 
separation is 3 msec, and that the decision time at the PCF level is estimated to be 

msT 200≈ , we can split T into 200/3 ≈66 bins of 3 msec duration, which are 
designated by 1 or 0 depending on whether they have a spike or not. Thus the a priori 
total number of different messages which can be transmitted is  
 

266≈6x1019 . 
However we must account also for the average rate at which spikes proceed in our brain, 
which is r= 40 Hz (so called γ band, <ISI>(average ISI) = 25 ms). When we account for 

this rate we can evaluate a reduction factor 54.0==
T
Sα  where S is an entropy 

[Rieke et al], thus there are roughly 2S ≈ 1011 words with significant probability. Even 
though this number is large, we are still within a finitistic realm. Provided we have time 
enough to ascertain which one of  the different messages we are dealing with, we can 
classify it with the accuracy of a digital processor, without residual error.  
But suppose we expose the cognitive agent to fast changing scenes, for instance by 
presenting in sequence unrelated video frames with a time separation less than 200 msec. 
While small gradual changes induce the sense of motion as in movies, big differences 
imply completely different subsequent spike trains. Here any spike train gets interrupted 
after a duration ΔT less than the canonical T . This means that the brain cannot decide 
among all coded perceptions  having the same structure up to ΔT, but different 
afterwards.  
Whenever we stop the perceptual task at  ΔT shorter than the total time T , then the bin 
stretch T-ΔT  
(we measure the times in bin units) is not explored. This means that all stimuli which 
provide equal spike sequences up to ΔT, and differ afterwards by at least one spike will 
cover an uncertainty region ΔP whose size is given by 

2ln22 T
M

TT ePP Δ−Δ− ==Δ ααα                    (1) 

where PM≈1011 is the maximum perceptual size available with the chosen 6.66≈T  
bins per perceptual session and rate r=40 Hz. Relation (1) is very different from the 
standard uncertainty relation  

CTP =Δ⋅Δ                    (2) 



10 

that we would expect in a word-bin space ruled by Fourier transform relations.  

Indeed, the trascendental equation (1) is more rapidly converging at short and long ΔT 
than  the hyperbola (2). We fit (1) by (2) in the neighborhood of a small uncertainty ΔP 
= 10 words, which corresponds to ΔT = 62 bins. Around ΔT = 62 bins the local 
uncertainty (2) yields a quantum constant 

binswordsC ×=⋅= 6206210         (3) 

To convert C into Js as Planck’s h, consider that: 
i)1 bin = 3 ms 
ii)in order to jump from an attractor corresponding to one perception to a nearby one, a 
minimal amount of energy is needed, corresponding to one spike; but one spike requires 
the energy corresponding to about 107 transitions ATP→ADP+ P [Laughlin et al] each 
one taking 0.3 eV; thus the total energy quantum is about 10-14 joules .The conversion 
factor is then:  
 
                                                         h2014 1010 ≈≈ − JsC  
 
Quantum limitations were also put forward by Penrose [Penrose] but on a completely 
different basis. In his proposal, the quantum character was attributed to the physical 
behavior of the “microtubules” which are microscopic components of the neurons 
playing a central role in the synaptic activity. However, speaking of quantum coherence 
at the h-bar level in biological processes is not plausible, if one accounts for the extreme 
vulnerability of any quantum system  to decoherence processes, which make quantum 
superposition effects observable only in extremely controlled laboratory situations, and at 
sub-picosecond time ranges ,not relevant for synchronization purposes in the 10-100 
msec range. 
Our tenet is that the quantum C-level in a living being emerges from the limited time 
available in order to take vital decisions ;it is logically based on a non-commutative set of 
relevant variables and hence it requires  the logical machinery built for the h-bar quantum 
description of the microscopic world where non-commutativity emerges from use of 
variables coming from macroscopic experience ,as coordinate and momenta, to account 
for new facts.  
   A more precise consideration consists in classifying the spike trains. Precisely, if we 
have a sequence of identical spikes of unit area localized at erratic time positions τl then 
the whole sequence is represented by  

∑ −=
l

lttf )()( τδ                              (3) 

where {τl} is the set of position of the spikes. A temporal code, based on the mutual 
position of successive spikes, depends on the moments of the interspike interval 
distributions 

( ) { }1−−= lllISI ττ                               (4) 
Different ISIs encode different sensory information. 
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A time ordering within the sequence (3) is established by comparing the overlap of two 
signals as (3) mutually shifted in time. Weighting all shifts with a phase factor and 
summing up, this amounts to constructing a Wigner function [Wigner] 

 

∫
+∞

∞−

−+= τωτττω ditftftW )exp()2/()2/(),(              (5) 

 
If now f is the sum of two packets f=f1+f2 as in Fig. 8, the frequency-time plot displays 
an intermediate interference. Eq. (5)   would provide interference whatever is the time 
separation between f1 and  f2.  
In fact, we know that the decision time T  truncates a perceptual task, thus we must 
introduce a cutoff function )/exp()( 22 Tg ττ −≈  which transforms the Wigner 
function as  
 

∫
+∞

∞−

−+= ττωτττω dgitftftW )()exp()2/()2/(),( .    (5’) 

In the quantum jargon, the brain physiology breaks the quantum interference for 
Tt > (decoherence phenomenon ).  

 

4 The role of the Wigner function in brain operations. 

We have seen that feature binding in perceptual tasks implies the mutual synchronization 
of  axonal spike trains in neurons which can be even far away and yet contribute to a  
well defined perception by sharing the same pattern of spike sequence.The 
synchronization conjecture    was   given   experimental evidence by inserting several 
micro-electrodes probing each one single neuron in the cortex of cats and then studying 
the temporal correlation in response to specific visual inputs[Singer et al]. In the human 
case, indirect evidence is acquired by exposing a subject to transient patterns and 
reporting the time-frequency plots of the EEG signals [Rodriguez et al.]. Even though the 
space resolution is poor, phase relations among EEG signals coming from different 
cerebral areas at different times provide an indirect evidence of the synchronization 
mechanism. 

 
  The dynamics of homoclinic chaos (HC) was motivated by phenomena observed in 
lasers and then explored in its mathematical aspects, which  display strong analogies with 
the dynamics of many biological  clocks ,in particular that of a model . HC provides 
almost equal spikes occurring at variable time positions and presents a region of high 
sensitivity to external stimuli; perturbations arriving within the sensitivity window induce 
easily a synchronization, either to an external stimulus or to each other (mutual 
synchronization ) in the case of an array of coupled HC individuals (from now on called 
neurons). 
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 But who reads temporal information contained across synchronized and oscillatory spike 
trains?[MacLeod et al]. 
 
In view of the above facts, we can model the encoding of external information on a 
sensory cortical area (e.g. V1 in the visual case) as  a particular spike train assumed by an 
input neuron directly exposed to the arriving signal and then propagated by coupling 
through the array. As shown by the  experiments on feature binding [Singer], we must 
transform the local time information provided by Eqs (3) and (4) into a spatial 
information which tells the amount of a cortical area which is synchronized.  
If many sites have synchronized by mutual coupling, then the read out problem consists 
in tracking the pattern of values (3), one for each site. Let us take for simplicity a 
continuous site coordinate r.  
In case of two or more different signals applied at different sites a competition starts and 
we conjecture that the winning information (that is, the one channeled to a decision 
center) corresponds to a “majority rule”. Precisely, if  the encoding layer is a 1-
dimensional chain of N coupled sites activated by external stimuli at the two ends (i=1 
and i=N),the majority rule says that the prevailing signal is that which has synchronized 
more sites. 

 
The crucial question is then :who reads that information in order to decide upon? We can 
not recur to some homunculus who reads the synchronization state. Indeed, in order to be 
made of physical components, the homunculus itself should have   some interpreter 
which would be a new homunculus, and so on with a “regressio ad infinitum”.  

  
On the other hand, it is well known that ,as we map the interconnections in the vision 
system,V1 exits through the Vertical stream and the Dorsal stream toward the 
Inferotemporal Cortex and Parietal Cortex respectively. The two streams contain a series 
of intermediate layers characterized by increasing receptive fields ; hence they are  
cascades of layers where  each one receives converging signals from two or more 
neurons of the previous layer. Let us take for the time being this feed-forward 
architecture as a  network enabled  to extract relevant information upon which to drive 
consequent actions . 

We  show how this cascade of layers can localize the interface between two domains 
corresponding to different synchronization. It is well known that ON/OFF cells with a 
center-surround configuration perform a first and second space derivative[Hubel].  
Suppose this operation was done at certain layer . At the successive one, as the 
converging process goes on,  two signals will converge on a simple cells which then 
performs a higher order derivative, and so on. This way ,we build a power series of 
space derivatives. A translated function as f(r+ξ) is then reconstructed by adding up 
many layers, as can be checked by a Taylor expansion.  
Notice that the alternative of exploring different neighborhoods ξ of r by varying ξ  
would imply a moving pointer to be set sequentially at different positions, and there is 
nothing like that in our physiology. 
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The next step consists in comparing the function f(r+ξ) with a suitable standard, to 
decide upon its value. Since there are no metrological standards embedded in a living 
brain, such a comparison must be done by comparing f with a shifted version of itself, 
something like the product 

f(r+ξ) f(r-ξ)  
Such a product can be naturally be performed by converging the two signals f(r±ξ) onto 
the same neuron, exploiting the nonlinear (Hebbian )response characteristic limited to the 
lowest quadratic nonlinearity, thus taking the square of the sum of the two converging 
inputs and isolating the double product. 
This operation is completed by summing up the different contributions corresponding to 
different ξ, with a kernel which keeps track of the scanning over different ξ, keeping 
information on different domain sizes. If this kernel were just a constant, then we would 
retrieve a trivial average which cancels the ξ information. 
Without loosing in generality, we adopt a Fourier kernel exp(i kξ) and hence have built 
the quantity 
 
 

( ) ( ) ( ) ( ) ξξξξ dikexprfrfkrW +−= ∫
+∞

∞−

,                (6) 

 
 It contains information on both  the space position r around which we are exploring the 
local behavior, as well as the frequency k which is associated with the space resolution . 
As well known, it contains the most complete information compatible with the Fourier 
uncertainty 

 
                                                             ΔxΔk≥ 1.                                 (7) 
 
Notice that building a joint information on locality(x) and resolution (k)  by physical 
measuring operations implies such an intrinsic limitation. 
 
In summary ,it appears that the Wigner function is the best read-out of a synchronized 
layer that can be done by exploiting natural machinery, rather than recurring to a 
homunculus. The local value of  the Wigner function represents a decision to be sent to 
motor areas triggering a suitable action. 

           
             In order to have a suitable description of the feature binding mechanism in terms 
of a Wigner function in time (at a single site) and space (over an array of sites) we need 
an evolution equation. But which are the physical objects whose evolution describes the 
phenomenology? I conjecture that the transition from de-coupled to fully synchronized 
neurons is controlled by the dynamics of defects (see Fig. 7). A preliminary treatment of 
defects as harmonic oscillators is summarized in Fig.9 . The total Hamiltonian then rules 
the evolution equation for the Wigner function and shoul.d provide a complete quantum 
description. 
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Fig. 7.   Space –time representation of spike positions for a linear array of 40 neurons and for different amounts 
of nearest neighbor coupling. At ε=0.25 percolation has been reached, in the sense that spikes at all sites are 
connected (besides a mutual time lag to the transfer operation); at  ε=0 , no  correlation at all among different 
sites; in between, a partial synchronization with the evidence of defects as phase slips (one spike more, or less, 
with respect to the neighbor site) 

 
  The oscillating interference of Fig.8   is crucial for quantum computation.The reason 
why we don’t see it in ordinary life is “decoherence”. Let us explain what we mean. 
If the system under observation is affected by the environment, then the two states of the 
superposition have a finite lifetime; however, even worse, the interference decays on a 
much shorter time (the smaller, the  bigger is the separation between the two states): so 
while the separation is still manageable for the two polarization states of a photon, it 
becomes too big for the two states of a macroscopic quantum system. Precisely if we call 
τi the intrinsic decay of each one of the two states of the superposition, then the mutual 
interference in the Wigner function decays with the so-called decoherence time  

2D
i

dec
ττ =                              (9) 

where D2 is the square of the separation D in phase space between the centers of the 
Wigner functions of the two separate states. Notice that, in microscopic physics, D2 is 
measured in units of h . Usually h/2D is much bigger than unity for a macroscopic 
system and hence decτ  is so short that any reasonable observation time is too long to 
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detect a coherent superposition. Instead, in neurodynamics, we perform  measurement 
operations which are limited by the intrinsic sizes of space and time resolutions peculiar 
of brain processes. The associated uncertainty constant C is such that it is very easy to 
have a relation as (9) with D2/C comparable to unity, and hence superposition lifetimes 
comparable to times of standard neural processes. This implies the conjecture that for 
short times or close cortical domains a massive parallelism typical of quantum 
computation should be possible. The threshold readjustment due to expectations arising 
from past memory acts as an environmental disturbance, which orthogonalizes different 
neural states, destroying parallelism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8: Wigner distribution of two localized sinusoidal packets shown at the top. Bottom :frequency-time 
representation of the levels of the (real but not always positive!) Wigner function. The oscillating interference is 
centered at the middle time-frequency location   
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Fig. 9. A  summary of the strategy to characterize the quantum aspects of the time code. Here x is an N-
dimensional (N=6 for HC) dynamical field depending on position r. Its local dynamics is given by the equation  
f(x). Furthermore, the space coupling of strength ε is given by the Laplacian. Linearizing the equation at 
parameter values below the percolation threshold, Fourier transforming and diagonalizing the linearized 
equation, we have harmonic oscillators. Their coordinate and momenta do not commute, because of the 
fundamental energy-time uncertainty with the quantum constant C.  From the k-dependence of the oscillator 
amplitudes α(k) one reconstructs the space features of the defects 
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