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We present experimental and numerical evidence of synchronization of burst events in two different modu-
lated CO2 lasers. Bursts appear randomly in each laser as trains of large amplitude spikes intercalated by a
small amplitude chaotic regime. Experimental data and model show the frequency locking of bursts in a
suitable interval of coupling strength. We explain the mechanism of this phenomenon and demonstrate the
inhibitory properties of the implemented coupling.
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I. INTRODUCTION

Recently, synchronization of chaotic systems has attracted
much attention in the scientific community �1�. In particular,
synchronization of oscillations in interacting lasers is one of
the most relevant problems in experimental nonlinear dy-
namics.

Synchronization of chaotic lasers was first observed in
Nd:YAG �Nd: yttrium aluminum garnet� �2� and CO2 lasers
with a saturable absorber inside the optical cavity �3–5�.
Later, synchronization of chaotic erbium doped fiber ring �6�
and microchip �7� lasers were experimentally studied. Par-
ticular attention has been devoted to synchronization phe-
nomena in semiconductor lasers in view of their impact in
telecommunication systems using chaotic carriers �8–12�.
Synchronization of chaotic CO2 lasers with an intracavity
electro-optic loss modulator has been extensively investi-
gated during these years �13�.

An important topic in neurodynamics is the bursting be-
havior �16� where a spiking regime is alternated by a quies-
cent state or subthreshold activity; in this way, the bursting
shows two different time scales, the fast dynamics �spikes�
and the slow one responsible for the alternation. In neuron
arrays the bursting synchronization is important for informa-
tion coding and cognitive functions �19�. The CO2 laser with
sinusoidal modulation of the cavity losses shows a similar
behavior, that is, the crisis-induced intermittency �14�. For a
suitable value of the modulation amplitude the system jumps
between small-amplitude chaotic oscillations and an unstable
periodic orbit of large amplitude �15�.

In this paper we study the synchronization of bursting in
two coupled CO2 lasers and the time scales accompanying
locking of bursts, focusing on the analogies with neurody-
namics. Up to now, only few theoretical studies have consid-
ered coupled nonautonomous chaotic oscillators with mul-
tiple time scales �17� or coupled chaotic oscillators with
multiple attractors �18�. As stressed above, lasers exhibiting
bursting regimes are good candidates for this type of
investigation.

The paper is organized as follows. In Sec. II, the coupling
scheme between the two lasers and the experimental results
are reported. In Sec. III we introduce the model and we ana-
lyze the dynamical regimes when the coupling strength is
varied. In Secs. IV and V we describe the structure of the
bursts and the related synchronization. Finally, Sec. VI is
devoted to the conclusions.

II. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is shown in Fig. 1. It consists of
two single-mode lasers with intracavity electro-optic modu-
lators. The cavity length and output mirror transmission are,
respectively, L1=1.43 m and T1=0.10 for the first laser and
L2=1.35 m and T2=0.090 for the second one. The decay
rates are expressed as k1,2= �cT1,2� / �L1,2�.

Both lasers are driven by a sinusoidal signal A sin�2�ft�
provided by two phase-locked oscillators at f =100 kHz. The

FIG. 1. �Color online� Laboratory setup consisting of two CO2

lasers with loss modulation, partly due to an external driving and
partly due to the coupling. G, grating; EOM, electro-optic modula-
tor; L1T and L2T, laser tubes; M, mirror; D, detector; AM, input for
amplitude modulation of the driving; B1,2, bias voltages.
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lasers are bidirectionally coupled through their intensities’
difference used as amplitude modulation of A,

Fm
1 = A1�1 + ��y1 − x1��sin�2�ft� ,

Fm
2 = A2�1 + ��x1 − y1��sin�2�ft� , �1�

where x1 �y1� is a quantity proportional to the output inten-
sity of the first �second� laser. The parameters of both lasers
are set at values just after the onset of the interior crisis,
where they display intermittent behavior as shown in Fig. 2.
As the coupling strength � is suitably adjusted, the jumps on
the unstable orbits occur synchronously �Figs. 3�a� and 3�b��.
A more detailed analysis reveals that the two lasers are
nearly phase synchronized during the small amplitude cha-
otic regime while during the bursts their dynamics are anti-
correlated. Globally in the bursting behavior the lasers dis-
play frequency synchronization. Such a behavior is clearly
shown when we report the interburst time intervals in the x
−y representation �Fig. 3�c��.

III. NUMERICAL MODEL AND DYNAMICAL REGIMES

The model for the two lasers is

x1̇ = k1x1�x2 − �1 + �1 sin2�Fm
1 + B1��� ,

x2̇ = − �1x2 − 2k1x1x2 + �x3 + x4 + P1,

x3̇ = − �1x3 + x5 + �x2 + P1,

x4̇ = − �2x4 + �x5 + zx2 + zP1,

x5̇ = − �2x5 + zx3 + �x4 + zP1, �2�

y1̇ = k2y1�y2 − �1 + �2 sin2�Fm
2 + B2��� ,

y2̇ = − �1y2 − 2k2y1y2 + �y3 + y4 + P2,

y3̇ = − �1y3 + y5 + �y2 + P2,

y4̇ = − �2y4 + �y5 + zy2 + zP2,

y5̇ = − �2y5 + zy3 + �y4 + zP2, �3�

where x1 �y1� represents the laser output intensity, x2 �y2� is
the population inversion between the two resonant levels,
and x3 �y3�, x4 �y4�, and x5 �y5� accounts for molecular ex-
changes between the two levels resonant with the radiation
field and the other rotational levels of the same vibrational
band; �1,2= �1−2T1,2� / �2T1,2�, B1,2 are bias voltages, P1,2 are
pump rates, �, �1, and �2 are molecular decay rates, and z is
the number of sublevels in the CO2 rotational band.

The parameter values are k1=30, k2=28.57, �1=4, �2
=4.5, B1=0.1794, B2=0.117, �1=10.0643, �2=1.0643, �
=0.05, P1=0.01987, P2=0.0196, and z=10.

FIG. 2. Experimental time series from the first �a� and the sec-
ond laser �b� in the free regime.

FIG. 3. Experimental time series from the first �a� and the sec-
ond laser �b� in synchronized regime for �=0.005; �c� plot of inter-
bursting times of the second lasers versus the first one, showing
frequency synchronization of burst events.
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At �=0 the two lasers are subjected to the modulation
with the same frequency f =100 but with different amplitudes
A1,2. The two lasers have fixed point dynamics without the
forcing �A1,2=0�. They spike and burst for moderate forcing
�A1=0.1 and A2=0.129 in the following simulations� and re-
sume convergence to the stable fixed point at strong driving
�at A1�3.7, A2�2.8�.

The time series for the intensities x1 and y1 in the un-
coupled case ��=0� are reported in Figs. 4�a� and 4�b� and
consist of chaotic sequences of spiking events. The chaotic
oscillations can be clearly seen in Figs. 4�c� and 4�d� that
display the new quantities z1=ln�x1� and z2=ln�y1�. Note that
the spiking behavior occurs at the frequency of the modula-
tion signal.

To study the dynamical changes due to coupling, we first
calculate the largest Lyapunov exponents of the system as a
function of the coupling strength. As seen in Fig. 5�a�, there
are many regions of �, where the oscillations become peri-
odic ��1=0� due to the coupling. To characterize the changes
in the spiking behavior, we plot the maximal values of x1 and
y1 as a function of �, as shown in Fig. 5�b�. It turns out that

in a large range of coupling parameter, the bursting behavior
is suppressed due to coupling. An example of this latter situ-
ation is reported in Fig. 6. The maximal intensities become
smaller compared to those at �=0. However, we see that
around �=160 the lasers’ maximal intensities abruptly in-
crease. This fact is related to occasional bursting events with
much larger intensities compared to usual spikes. The time
series of the intensities before and after this transition are
shown in Figs. 7�a� and 7�b� ��=158� and Figs. 7�d� and 7�e�
��=162�. Such multiple time scale oscillations are the main
subject of our study. With further increase of �, bursting
events become more frequent and at large enough coupling
strength, the large amplitude spikes become ubiquitous.

IV. THE STRUCTURE OF BURSTING PATTERNS

Large spikes constituting bursts come in specific se-
quences. First, let us discuss the properties of the imple-
mented coupling. Consider the modification of the modula-

FIG. 5. �a� The largest Lyapunov exponents �1 and �2; �b� maxi-
mal intensities of x1 �black line� and x2 �gray line� as a function of
the coupling strength �.

FIG. 4. Numerical time series of the two laser intensities for �
=0: in �a�,�b� are represented x1, y1; in �c�,�d� z1=ln�x1�, z2

=ln�y1�. The modulation signal is reported in �c�,�d�.

FIG. 6. Numerical time series of the two laser
intensities: �a�,�b� �=40 �periodic�; �c�,�d� �=75
�chaotic�.
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tion signals in Eqs. �1�–�3� due to the effective coupling term

� = ��x1 − y1� . �4�

Note that the effective amplitude of the modulation signal
is asymmetrical in the two lasers: �1−�� for the first laser
and �1+�� for the second. It follows that, while a large spike
in one of the lasers results in large effective coupling �� �
	1 �Figs. 7�c� and 7�f��, the effective amplitude of the
modulation signal becomes large only in this counterpart.
The effect is twofold. First, large effective amplitude of
modulation inhibits oscillations in the laser. Second, the in-
hibited laser recovers more quickly than the inhibiting one,
and in its turn produces a large spike. The described details
of the bursting event �around t=17 in Fig. 7� are illustrated
in Fig. 8 within a much smaller time window. The alternat-
ing large spikes in the two lasers during this short epoch
appear as synchronized bursting events on large time scales
in Fig. 7.

With increasing �, the criterion �� � 	1 becomes easier to
fulfill, and we observe more frequent bursting behavior. The
discussed mechanism also implies that during the intervals of
low-amplitude spiking the interaction between lasers is too
small to provide alternation of spikes, and they occur follow-
ing the modulation signal, i.e., practically at the same mo-
ments.

The same pattern is observed in experiments �Fig. 9�.
Small amplitude spikes are strongly correlated to the modu-
lation signal and thus occur almost simultaneously. Large
amplitude spikes alternate, with the time interval between the
closest ones in two lasers being an integer of the modulation
period Tf.

These findings reveal pronounced inhibitory nature of the
implemented coupling between two lasers in the regime of
burst generation. It results in the alternating or antiphase
dynamics of large amplitude spikes, a typical feature of col-

lective dynamics in inhibitory coupled neurons �16�. Such a
phenomenon is different from synchronization and antisyn-
chronization of chaotic power drop-outs and jump-ups found
in coupled semiconductor lasers �9� as well as from chaos
synchronization in optically coupled semiconductor lasers. In
the latter case the time lag between the dynamics is imposed
by the propagation of light between the two lasers �8�.

V. FREQUENCY LOCKING OF BURSTS

Numerical simulations allow for extensive analysis of col-
lective dynamics of bursting events on large time scales �up
to 107 t.u.� and interval of the coupling strength. The bursting
average frequency in each laser is given by


1,2 = lim
t→�

n1,2�t�/t , �5�

where n1,2�t� is the number of bursts occurring from the ini-
tial moment up to the time t. The phase of bursting reads

�1,2�t� = 2�
t − t�n1,2�

t�n1,2 + 1� − t�n1,2�
+ 2�n1,2,

t�n1,2�  t � t�n1,2 + 1� , �6�

t�n1,2� being the moment of the beginning of the n1,2th burst
in the respective laser. The criterion for the onset of a burst
was that the amplitude of a spike exceeds a threshold value
of 0.015, while the time separation of the previous large
spike took place not larger than 80Tf ago �we recall that Tf
=7 in the numerical model�.

In Fig. 10�a� we plot the normalized frequency difference
in interacting lasers �
1−
2� /
1 vs the coupling strength �.
From the reappearance of bursting at ��160, the relative
difference in their frequencies monotonously decreases and
approaches zero at ��173. Bursts in lasers remain fre-

FIG. 7. Numerical time series of the two laser intensities:
�a�,�b�,�c� �=158 �nonbursting�; �d�,�e�,�f� �=162 �bursting�.

FIG. 8. Details of the bursting event around t=17 in Fig. 7 ��
=162�. �a� x1, z1 �black� and �b� y1, z1 �gray�; �c� time series of the
coupling forcing � in Eq. �4�.
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quency locked until ��178, when the frequency mismatch
jumps to 2%. The subsequent desynchronization of the burst-
ing is due to the qualitative change in the dynamics of inter-
acting systems. Namely, intervals between bursts become
shorter and large spikes emerge more randomly, so that
bursts become indistinguishable in result. The evolution of
the phase difference on large time intervals demonstrates the
absence of phase locking, as the difference �1−�2 grows
unbounded even when the frequencies are locked �Fig.
10�b��. In connection with the observed scenario of the onset
of frequency synchronization of bursts and desynchroniza-
tion at larger coupling, we point at the relevant
synchronization-desynchronization transitions in identical
chaotic systems �20� and nonidentical intermittent and neu-
ronal spiking maps �19,21�.

VI. CONCLUSIONS

In conclusion we have experimentally and numerically
studied the frequency synchronization of bursting regime in
two nonidentical CO2 lasers. We have shown the antiphase
synchronization inside bursting events as a consequence of
an inhibitory mechanism and transitions from synchroniza-
tion to desynchronization at large coupling. The desynchro-
nization of the bursting is due to the qualitative change in the
dynamics of the interacting systems.
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