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Chaos in lasers is related to deterministic chaos in single mode lasers. The onset of deterministic chaos in a 
dynamical system requires at least a 3-dimensional phase space. We recall that a 3D dynamical system is 
characterized by 3 coupled first order differential equations as  

, with . 

 

If the system is dissipative, it has attractors, and the sum of the Lyapunov exponents  of an attractor is 
negative. This can be satisfied by the following sets of  signs: (-,-,-); (-,-,0); (-,0,0); (-,0,+). The first set has 
contraction in all 3 directions, thus yielding a stable equilibrium point attractor. The second set yields a stable 
limit cycle. The third one corresponds to a torus (quasiperiodic motion with 2 incommensurate basic 
frequencies). Eventually the fourth one (with the obvious constraint that the positive exponent be smaller than 
the absolute value of the negative one, in order to satisfy the dissipativity condition) is a "strange" attractor. A 
positive Liapunov exponent means that an arbitrarily small initial difference between two points on the 
attractor grows exponentially to a sizable value. This sensitive dependence on the initial conditions has been 
called "deterministic chaos". We show how the above minimal conditions for chaos can be satisfied by a 
single mode laser.  

 
 

Deterministic chaos in a single mode laser 

The semiclassical laser dynamics emerges from coupling the Maxwell equations for a classical optical field in 
a cavity with N atoms. We consider each atom as a two-level quantum system, described by a density matrix, 
and coupled near resonance to the optical field via an electric dipole moment ; here  is 
the matrix element of the dipole operator between upper and lower atomic states ( for an allowed transition 
is of the order of the electronic charge times the Bohr radius,that is,  Cm) and  are the off
diagonal components of the atomic density matrix .  

For the time being, we introduce some simplifying assumptions, namely:  

the field is in a single mode with uniform amplitude, that is, its amplitude is given by  
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where  is the stationary configuration of the cavity mode. In the case of one dimensional cavities, limited 
along the  axis by two mirrors separated by  and unbounded in the transverse directions , , 

, where  is an integer which specifies the cavity mode. The frequency  is 

related to the nearest cavity resonance ,  being the light speed in the cavity, by the mistuning 
relation  

 
 

the cavity mode has a loss rate  due the mirror reflectivity  and to diffraction on the open 
transverse boundary; if diffraction is negligible, then  is just due to the mirror losses and is given by  

 

 

the wave equation yields a trivial dispersion relation between the optical frequency and the wave-
number; in the so called SVEA (slowly varying envelope approximation), the envelope  of the field 
is coupled to the resonant Fourier component  of the atomic polarization via the first order equation  

 

 

where the coupling constant  is related to the matrix elements  and the cavity volume  (taken filled with
atoms) by the relation  

 

 

(just to give the order of magnitude, at optical frequencies and for , with the above given value of 

,it is );  

the atoms are uniformly distributed in the cavity and its collective dynamics is represented by the 

polarization, which is the sum of the dipole moments per unit volume . 
 

If we call  the population inversion that some ‘’pumping’’ mechanism induces on the 
atomic medium; then the atomic Bloch equations for  and  are respectively  

 

 

and  

 

 

In these equations,  is the dissipation rate for the polarization,  is the detuning between the 
field frequency  and the center  of the atomic line(for simplicity ,we consider a homogeneous atomic 
line where  is the same for all the  atoms),  is the dissipation rate for , and  is the equilibrium
inversion imposed by the pump in the absence of field. The above equations, together with the complex 
conjugate ones, make a closed set of 5 coupled equations called ‘’the Maxwell-Bloch equations’’ (MB). We 

(1) 

(2) 

(3) 
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restrict for simplicity to the resonant case in the absence of mistuning and detuning; in such a case, field and 
polarization are real and the equations reduce to 3 real ones, namely  

 

 

  

  

These real MB equations for a resonant single-mode laser have been around since 1963. They are isomorphic 
to the dynamical equations of the 1963 Lorenz chaotic model. This fact was recognized by H.Haken in 1975 
(Haken, 1975). Already in 1963 two young laser physicists, A.Z. Grasyuk and A N.Oraevski, had given 
numerical solutions of MB showing that irregular behavior was well above the errors due to limited digits of 
the numerical simulation (Grasyuk&Oraevsky, 1963). However the optical community was not yet able to 
draw a bridge with Lorenz-like phenomena ,as evidenced by a positive Liapunov exponent. One may ask why 
chaos is not ubiquitous in single mode lasers. In fact, time-scale considerations rule out the full MB dynamics 
for most available lasers. Lorenz 3D system is made of 3 dynamical variables with damping rates close to 
each other. On the contrary in MB the 3 damping rates  can be wildly different from each other. If 
one rate constant is much higher than the others, after a transient the corresponding dynamical equation can be 
solved at quasi-equilibrium ( adiabatic elimination procedure). and then we are left with  equations, 
thus ruling out chaos. The following classification has been introduced A.110 
(http://www.inoa.it/home/arecchi/Papers.php)  

Class A (e.g. He-Ne, Ar, Kr, dye lasers): . The atomic variables are much faster than the 
cavity field. The last two MB are solved at equilibrium and a single nonlinear field equation describes the 
laser.1D means fixed point attractor, hence coherent emission.  

Class B (e.g. ruby, Nd,CO2, most diode lasers): . 
 

Polarization is fast, the middle MB is eliminated and two rate equations for field and population are left. 2D 
means stable fixed point, but also periodic oscillation for suitable parameter setting.  

Class C (far IR lasers with slow molecular damping) : . 
 

The full MB set has to be used, hence Lorenz chaos is generic.  

The first evidence of deterministic chaos in a single mode laser was given for Class B, CO2 lasers. 
Experimental verification was given by the chaotic fluctuations of the laser power output, proportional to 

. The topological explanation for the creation and destruction of chaotic attractors in class B lasers 
with modulation was given in [Schwartz,(1988)]. In order to increase dimension D from 2 to 3 and make it 
possible a positive Liapunov exponent, the following configurations have been proposed and tested: i) 
Introduction of a time dependent parameter to make the 2D system non autonomousA.90 
(http://www.inoa.it/home/arecchi/Papers.php). Precisely, an intra-cavity electro-optical modulator is driven at 

a frequency close to the oscillation frequency , and linear stability analysis predicts a perturbed 

2D system. For a CO2 laser, the relevant frequency range is 50-100kHz. ii) Injection of a field from an 
external laser is detuned approximately by the above, and with respect to the external reference, the cavity 
field has two quadrature components which represent independent dynamical variables. Hence the system is 
3D A.110 (http://www.inoa.it/home/arecchi/Papers.php). iii) Cavity as a bidirectional ring rather than a Fabry-
Perot A.120 (http://www.inoa.it/home/arecchi/Papers.php). At variance with the standing wave case, in the 
bidirectional case the two fields have no mutual phase constrains, thus they represent separate variables. 
Furthermore, a detuning provides a population grating yielding scattering processes whereby the dynamic 
dimensions are even more than 3. iv) Add an overall feedback besides that due to the cavity mirrors, by 
modulating the losses with a signal proportional to the detected output intensity. If the feedback loop has a 
time constant comparable with  and , it contributes a third equation, promoting the system to 3D 

(4) 
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A.134,142 (http://www.inoa.it/home/arecchi/Papers.php).  

Since feedback, modulation or external injection are currently used in laser applications, the presence of 
chaotic regions puts a caution on the generalized trust in the laser regularity.  

As for Class A single mode lasers, chaos would require 2 independent perturbations, thus it would be a highly 
artificial dynamical system. However, a multimode laser can easily get chaotic as soon as i) there are at least 3 
modes; ii) they are coupled by convenient nonlinearities (see Sec.3). As for Class C lasers, a clean evidence of 
Lorenz chaos was demonstrated in far IR lasers [Weiss et al.(1988)]; these systems however do not have wide 
applications, since their wavelength is in a spectral region where most materials are highly absorbing.  

A case study: HC= homoclinic chaos in a class B laser and 
synchronization to an external reference 

Among the chaotic scenarios, the so called HC (Homoclinic Chaos), consisting of trains of equal spikes with 
erratic interspike separation, was explored in CO2 and in diode lasers with feedback (see Fig.1).  

Fig.1 shows the experimental set up 
and displays the 3 coupled 
equations. The first two are the 
standard rate equations for the 
intensity  coupled to the 
population inversion  via the 
Einstein constant .  and  are 
the damping rates for  and , 
respectively,  is the pump rate. 
Two equations do not give chaos, 
and in fact a generic laboratory laser 
is not chaotic. We add a third 
equation as follows. The detected 
output intensity provides a voltage 

 which drives an intracavity loss 
modulator (see added  term in the 
first equations. In the feedback loop, 

 and  act as control 
parameters. The third damping rate 

 is of the same order as the other 
two.  

The dynamics (Fig.2) consists of 
trains of almost equal intensity spikes, separated by erratic inter-spike intervals (ISI). In b) we zoom on two 
successive spikes, to show their repeatability. By a threshold we may cut the small chaotic fluctuations and 
observe a spiking of regular shape; however, chaos results in the variable ISI. In c) we build a 3-D phase 
space by an embedding technique. Each point reports the intensity sampled at time  and after two short 
delays  and . The figure is built over many spikes. The part of the orbit with a single line is the 
superposition of the large spikes, the small chaotic tangle corresponds to the small non-repetitive pulses. The 
experimental phase space (Fig.2c) suggests that it is due to a homoclinic structure existing near a saddle focus 
equilibrium point S. When the system undergoes the so-called Shilnikov bifurcation, S has a homoclinic 
trajectory which escapes from S through a 2-dimensional unstable manifold associated with a complex 
conjugate pair of eigenvalues   and returns back through a 1-dimensional stable manifold 
associated with a negative eigenvalue  . We call  the contraction rate and  the 

Figure 1: CO2 laser with feedback: experimental set up and the 3 coupled 
equations. CO2 is the gas where an electric discharge provides molecular 
population inversion at the laser frequency; EOM is an electro-optic loss 

modulator driven by the voltage z of the feedback loop; R is the gain of the 
feedback amplifier and Bo a d.c. bias voltage A.134 

(http://www.inoa.it/home/arecchi/Papers.php) 
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complex expansion rate. If  
[Shilnikov], this local relation at S 
provides a complicated global phase 
space flow structure referred to as 
homoclinic chaos (HC). Since the 
return time to S is affected by the 
uncertainty in the expanding region, 
around S the system displays a high 
susceptibility 

. 
Away from S, the system is less 
sensitive to external perturbations 
and displays a repeatable loop. 
Time-wise, large spikes of equal 
shape repeat at chaotic inter-spike 
intervals. In fact the feedback laser 
model exhibits in addition a saddle 
node bifurcation; in such a case HC 
stays rather for heteroclinic chaos 
[Kuznetsov, (1998)]. Due to the 
high susceptibility, a small 
perturbation applied around S 
strongly affects the ISI; we exploit 
this fact to synchronize the HC laser 
to an external signal. If the driving 
frequency is close to the natural one 

Figure 2: a) trains of almost equal intensity spikes, separated by erratic 
inter-spike intervals (ISI). b) zoom on two successive spikes, to show their 
repeatability. c) 3-D phase space built by an embedding technique. Each 
point reports the intensity sampled at time t and after two short delays  
and . The figure is built over many spikes. The part of the orbit with a 
single line is the superposition of the large spikes, the small chaotic tangle 

corresponds to the small non-repetitive pulses. A.286 
(http://www.inoa.it/home/arecchi/Papers.php) 
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(associated with the average <ISI>) 
we have a 1:1 locking.  

Fig.3 shows the laser 
synchronization to a small forcing 
signal. In the feedback amplifier we 
introduce a periodic input which is a 
small percentage of the feedback 
signal. A forcing frequency close to 

 induces a 1:1 
locking; at lower frequencies we 
have 1:2 and 1:3 locking, at higher 
frequencies we have 2:1 etc locking 
regimes.  

It looks as a promising 
implementation of a time code: 
indeed, networks of coupled HC 
systems may reach a state of 
collective synchronization lasting 
for a finite time, in presence of a 
suitable external input. This opens 
powerful analogies with the feature 
binding phenomenon characterizing 
neuron organization in a perceptual 
task.  

Control of laser chaos  

Controlling chaos consists in perturbing a chaotic system in order to stabilize a given unstable periodic orbit 
(UPO) embedded in the chaotic attractor[E. Ott & et al.,(1990); T.Shinbrot et al.,(1993)]. However, other 
unstable orbits outside the attractor may also be controlled using an experimental continuation method [Carr, 
(1996)]. Different methods for controlling chaos have been proposed based on i) determination of the stable 
and unstable manifolds on the Poincare Section (PS)[E. Ott & et al., (1990)], ii) delayed feedback procedure 
[ Pyragas, (1992)] and iii) open loop perturbations[ Lima & Pettini, (1990)]. The OGY's ( Ott, Grebogi and 
Yorke) method for controlling chaos consists of slight readjustments of a control parameter each time the 
trajectory crosses the PS. Since a generic UPO is mapped on the PS by an ordered sequence of crossing 
points, OGY is able to stabilize such a sequence whenever the chaotic trajectory visits closely a neighborhood 
of one of the saddle PS points. It does this by performing a projection onto the stable manifold of the UPO. 
The time lapse for a natural passage of the flow within a fixed neighbourhood (hence for switching on the 
control process) can be very large. To minimize such a waiting time, a technique of targeting has been also 
introduced [T.Shinbrot et al.,(1990)]. OGY inspired an easily realizable experimental technique called OPF 
(Occasional Proportional Feedback), and demonstrated in a chaotic diode oscillator [Hunt, (1991)]. The OPF 
technique is based not only on feedback, but also on pulse duration, delay and amplitude [Carr,(1996)]. Roy et 
al. applied OPF to control of high dimensional chaos in a multimode laser system [ R. Roy et al., (1992)]. 
Such a laser is a diode laser – pumped solid state Nd –doped yttrium aluminium garnet (Nd: YAG) laser 
containing a KTP( potassium titanyl phosphate ) doubling crystal inside the optical cavity . The multimode 
laser with an intracavity crystal is an example of a system of globally coupled nonlinear oscillators. Such 
coupled oscillators have been found to be of relevance and interest in several physical, chemical and 
biological systems. The applicability of OPF as well as many other methods of controlling UPOs [Schwartz, 
(1997)], is not limited to stabilizing a chosen periodic orbit embedded in chaotic attractors or unstable steady 
states. Gills et al. demonstrated that OPF is able to track an unstable steady state in a chaotic multimode Nd: 
YAG laser with a nonlinear KTP crystal. Their results demonstrated the extension of the stability range over 
one order of magnitude, from a pump power about 20% above the threshold to more than 300% above the 

( p p p p)

Figure 3: Laser synchronization to a small forcing signal of frequency close 
to (a) or smaller (b and c)or larger (d) than, the natural HC frequency 

. A.286 (http://www.inoa.it/home/arecchi/Papers.php) 
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threshold [ Gills et al., (1992)]. The successful application of this technique has been also reported by Liu and 
Ohtsubo in a delayed optical bistable system that consists of a laser- diode interferometer with delayed 
optoelectronic feedback [ Liu & Ohtsubo, (1994)]. A delayed continuous feedback method (DCF) [ Pyragas, 
(1992)] considers a dynamical system ruled by a set of unknown ordinary differential equations, and having 
some scalar variable accessible for measurements. Furthermore, the system possesses at least one input 
accessible for external forcing. The above assumptions are met by the equations  

 
  

 
 

 
where y represents the output scalar variable, x the remaining variables of the dynamical system, F(t) is an 
input signal which perturbs the dynamical evolution of the variable y, and P and Q are two nonlinear 
functions. Suppose that the system exhibits chaotic dynamics when F=0 and T represents the period of an 
unstable periodic orbit embedded in the chaotic attractor. To achieve stabilization of the selected UPO, an 
external feedback line which reinjects into the system the difference between the signals y(t) and y(t- ) is 
used. The applied control signal will be given by: F(t)=K[y(t- -y(t)] , where the weight K has to provide a 
negative feedback (K<0) and represents a time delay. Stabilization of the selected UPO is achieved when  
equals the period T. DCF requires, a priori, the knowledge of the unstable orbit periodicity and it can be easily 
applied to non-autonomous systems in which the period is fixed by the forcing term. Bielawski et al. checked 
this method to control and track unstable orbits of a CO2 laser with modulated losses [Bielawski et al., 
(1994)]. The original DCF scheme can be replaced by a suitable filter ( called “washout filter” ) inserted in a 
feedback loop. Robustness, speed and general validity of this scheme in laser systems was reported by 
[Meucci et al., (1996)]. Closed loop control techniques have been demonstrated in fast electronic oscillators 
and in principle applicable to in optical systems with latency time below 1ns. However, for controlling and 
sustaining chaos in systems with fast time scales, open loop methods are preferable for two reasons: 1) they 
have no feedback time scale with which to compete. 2) Many nonlinear optical systems now are sufficiently 
modeled so it is easier to add a forcing term to control the dynamics in an open loop setting, rather than using 
a control filtering scheme which uses a multi-dimensional closed loop feedback. In general, a closed loop 
control requires a scheme to get the local variation around an unstable periodic orbit as a function of 
parameters , and this is not an easy task in higher dimensional systems. Nonfeedback methods traditionally 
make use of the effect of harmonic perturbations in the global dynamics. The effects of resonant perturbations
(induced optical bistability and chaos control ) and on loss modulated lasers was reported by [Chizhevsky et 
al., (1997)] Another nonfeedback method whose effectiveness has been proved in periodically driven chaotic 
systems is Phase Control of Chaos (PCC). In this control scheme, the control parameter is the phase difference 
between the main driving and a small harmonic perturbation that is applied to the system , either parametric or 
as an additional external forcing. The effectiveness of PCC in controlling or enhancing the intermittent 
behavior emerging after an interior crisis in a modulated laser was given by A.335 
(http://www.inoa.it/home/arecchi/Papers.php). See [Scholl & Schuster, (2007)] for an overview on the subject 
not limited to laser control.  
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