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Abstract. The cognitive problem is how a given sensorial input elicits a decision. Since the neuron dynamics are affected by deterministic
chaos, information is lost over the course of time. Control of chaos reduces such a loss rate by adding extra degrees of freedom. This
addition is a change of code; such a recoding occurs on two time scales, namely, (A) the cognitive one (lasting up to 3 s), within which
the brain reaches a collective state associated with a perception, and (B) the linguistic one (beyond 3 s), whereby memory retrieves
different (A) units and compares them. In (A) the neurons are mutually coupled in large networks; collective synchronization of neuron
arrays elicit decisions. In (B), different (A) slots are compared after retrieval. This requires a subject to be conscious of him/herself as
well as that the pieces of the stream be correlated. While in (A) the neuron synchronization is described in dynamic terms, in (B) the slot
comparison is formalized by an inverse Bayes rule. Distinction of (A), where coherent perceptions are built, from (B), where we formulate
attributions of truth, recovers the fundamental philosophical difference between apprehension and judgment.
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Introduction

We explore two different types of cognitive process, name-
ly, (A), whereby a coherent perception (apprehension)
emerges by recruitment of large neuron groups and (B)
whereby memory retrieval of different (A) units and com-
parison of them leads to the formulation of a judgment.

The time frontier between (A) and (B) has been stressed
explicitly by E. Poeppel in several papers (Poeppel, 1997,
2004, 2009).

(A) occurs over a time scale up to 3 s; it results from
collective synchronization of the gamma band oscillations
in wide brain areas. The synchronization mechanism has
been established in laboratory animals as well as in human
subjects; for (A) it makes sense to investigate the NCC
(neural correlates of consciousness). The various (A) slots
can be retrieved by memory processes and exploited for
motor decisions; this occurs in the everyday life of a cog-
nitive agent.

Even a stretching of this time scale does not change the
above picture; we speak always of (A) processes. Ned
Block (2005, 2009) distinguished between P-C (phenome-
nal consciousness), the subjective “what is to be like”” and
A-C (access consciousness), which is the content of P-C
made available for further action as motor responses. This
distinction refers to the same short time scale of (A) pro-
cesses; in fact several authors question the distinction be-
tween P-C and A-C (Kriegel, 2006); thus, Block’s distinc-
tion has no relation with our separation into (A) and (B)
processes.
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In (B), different (A) slots are mutually compared in order
to extract a global trend; this occurs over times above 3 s.
(B) is no longer a unique synchronization process, since
comparison implies the presence of differences among dif-
ferent (A) units. To accomplish (B), the cognitive subject
must be conscious of his/her doing such a comparison; thus
(B) does not entail mere awareness but self-consciousness.

We will explain (B) in terms of what we call an “inverse
Bayes process.” The standard Bayes process (Bayes, 1763)
has already been shown to play a crucial role in fast deci-
sions (Kording & Wolpert, 2008; Ma, Beck, & Pouget,
2008). The inverse process, here introduced for the first
time, permits formulating a judgment, whereas (A) is just
apprehension.Thus, we provide a scientific basis to the
philosophical distinction of the two successive cognitive
actions that characterize human insight (Lonergan, 1957).

Deterministic Chaos and Cognitive Abilities

Cognition means extracting from the environment some
features on the basis of which to react. This occurs at any
level, starting from unicellular organisms that build deci-
sions by processing chemical and thermal gradients. In
multicellular organisms, a processing speed up is obtained
by electrical rather than chemical mutual communication.
This is not limited to animals but is now observed in plants
as well (Masi et al., 2009).

As animals get more complex, the distributed processing
networks specialize into a dedicated organ, the brain. A
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brain is made of huge networks of coupled units, the neu-
rons. A single neuron displays chaotic behavior if studied
in isolation; however small neuron networks are stabilized
against chaos by a combination of inhibitory mutual feed-
backs. They perform a specific function such as a stereo-
typed reaction to a stimulus as it occurs in the CPG (central
pattern generator) or encoding mechanisms as explored in
the olfactory system of insects (Rabinovich, Varona,

Selverston, & Abarbanel, 2006).

Encoding is just the first step; then one must read the
information and make good use of it. A possible paradigm
is that of fixed-point attractors (Hopfield, 1982), that is, the
neuron dynamics converge toward stable equilibrium
points. Any input is classified according to its resemblance
to a template previously stored in the system; this fact en-
dows an attractor network with capacity scalable to its size.
However, a stable attractor network has a strong limitation
in its limited capacity. Resorting to the dynamic attractors
associated with chaotic dynamics, one can build richer sce-
narios that are not restricted to a fixed repertoire.

Here the central cognitive issue emerges. In the presence
of chaos, if the information loss rate is high, it precludes a
convenient reaction. In fact, the only operational way to
attribute cognitive ability to an agent is to look at its reac-
tions. A smart cognitive agent can compensate for chaotic
information loss by reverting to memory resources that add
extra signals perturbing the original input and, hence, re-
coding the original dynamic space. This provides a reduc-
tion of the loss rate. This strategy is called control of chaos
(Ott, Grebogi, & Yorke, 1990). In the case of many coupled
chaotic units, a way of displaying a coherent behavior, that
is, holding information for a time much longer than the
chaotic decay rate of a single unit, is mutual synchroniza-
tion (Pecora & Carroll, 1990).

Some open questions:

1. Consider a set of coupled neurons in an array acting as
a feature-detector; it is hypothesized that the interplay
between bottom-up stimuli arriving from sensory areas
and top-down signals fed from memory stores (Carpen-
ter & Grossberg, 2003) yields collective synchronization
(Singer, 2007). How well do these attractive hypotheses
match the observed types of behavior?

2. Calling cognition the loop perception-action, this can be
fast (around 100 ms) and explained by Bayes procedures
(Kording & Wolpert, 2008) or slower (around, say,
800 ms) and mediated — in the case of humans — by pro-
cessing in the prefrontal cortex (Rodriguez et al., 1999).
The cognitive problem is how a sensorial input elicits a
decision. Once some early neuron groups encode the
sensory signals into specific sequences of neuron spikes,
is that code already driving an appropriate action or is
further recoding necessary?

3. In this second case, the cognitive agent makes use of its
own resources, in order to reduce the original informa-
tion loss rate and be able to build an appropriate reaction
to its environment. The amount of this reduction can
change from one individual to another. We call creativity
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(Arecchi, 2007a, 2007b) the “best” recoding that length-
ens the time over which information is lost (not too short,
otherwise it would preclude an appropriate reaction, nor
too long, otherwise it would make the agent blind to suc-
cessive inputs). How can creativity be measured?

We will explore how a network of locally coupled chaotic
oscillators can reach a state of collective synchronization.
In the absence of synchronization, the time separations of
spikes occurring at adjacent sites are spread over a wide
distribution; technically, we say that the corresponding en-
tropy is large. The indicator of the collective state is a re-
duction of this entropy, denoting the onset of an ordered
state in that time separation. The onset of this state is either
spontaneous, above a critical value of the mutual coupling,
or is the response to an applied stimulus, for coupling below
the critical one. The former case is asemantic, as it does not
hint at an input; indeed, asemantic collective synchroniza-
tion is an indicator of an epileptic seizure (Traub & Wong,
2009; Queiroz, Gorter, Lopes da Silva, & Wadman, 2009).
In the latter stimulated case, the collective state lasts for a
finite duration Az, depending on the amplitude of the ap-
plied stimulus and the coupling strength. Thus, combina-
tions of input stimuli and coupling strengths provide a spe-
cific response, and the network acts as a semantic network,
which recognizes different inputs yielding different Az. Ad-
justment of the coupling strength should provide adaptabil-

ity.

Complexity and Code Change

A scientific problem formalized within a fixed code can be
written as a computer program. We call complexity (algo-
rithmic) the bit size of the shortest instruction that solves
the problem (Chaitin, 1970). On the other hand, determin-
istic chaos entails loss of information over time. Control of
chaos adds extra degrees of freedom: This is a change of
code guided by criteria not included in the previous code
and, thus, not reachable by the computer, that is, nonalgo-
rithmic. We call semantic complexity the number of differ-
ent codes that provide an adequate description of a situa-
tion, that is, a piece of world at a given moment. This cor-
responds to the attribution of meaning to that situation,
which amounts to selecting a particular point of view from
which to observe it. Notice that this is a fuzzy concept, since
the situation can change because of the interaction with the
cognitive agent (e.g., the variations in the stock market as
an agent interacts with it).

The Two Time Scales of Cognitive Processes
and Consciousness

Control of chaos explains collective synchronization of
large neuron arrays, which elicit decisions. It is confined to
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time slots (A) called presemantic islands (Poeppel, 1997,
2004, 2009), within which separate sensorial channels with
different onset times (acoustic, visual) adjust their occur-
rence in order to hint at the same object. (A) lasts at most
3's, as established from bistable or binocular rivalry exper-
iments. Within (A), the readiness potential can precede
awareness (Libet, 2004), thus, the associated awareness is
not really consciousness.

On longer times, different 3 s slots are not correlated in
hardware. They rather represent a semantic stream (B) that
requires interpretation, thus, a subject aware of him/herself
as well as of the pieces of the stream to be correlated. In
(B) the operation that provides a change of code is the ex-
ploration of diverse Bayes models until one attains the most
plausible interpretation of the data stream, thus, concluding
with an attribution of truth.

As we compare (A), that we have in common with other
animals and that may be conveniently explained in terms
of the NCC (Koch, 2004; Noe & Thompson, 2004), with
(B) where we formulate attributions of truth, we recover a
scientific basis for the difference between apprehension and
judgment as discussed by philosophers (Lonergan, 1957).

Cognition (A) as Coherent Perception

In Newtonian dynamics, assigning a force law and starting
from some initial conditions, a unique trajectory emerges,
which means that at any later time we can predict the state
of the system. This has been the basis of determinism,
whereby the future can be evaluated in advance since it
relies on the knowledge of the initial conditions. If the dy-
namic system is made of N variables, then we should assign
N initial numbers. In general, these numbers are real, made
of an infinite sequence of digits; but a measuring procedure
or a storage device can handle only a finite number of digits,
thus the initial point is, in fact, a fuzzy cloud.

In 1890, H. Poincaré (see Arecchi, 2007b) showed that
for N = 3 or larger, the dynamics can have a sensitive de-
pendence on the initial conditions, that is, points within the
initial cloud can give rise to trajectories that diverge from
the ideal trajectory over the course of time (transverse in-
stability). This behavior, called deterministic chaos, is pe-
culiar to nonlinear dynamic systems, that is, systems whose
equation of evolution includes variables with powers larger
than then 1. Such is the case for a neuron, the dynamics of
which have been described by several models starting with
Hodgkin and Huxley (1952).

In 1990, a method of chaos control was introduced by
Ott et al. As some extra p variables are added to N, the new
dynamic problem, recoded in N + p dimensions, can still
keep the same longitudinal trajectory; yet the transverse in-
stability has been partially or totally removed. Take a cha-
otic system where the initial information is lost in 2 ms (this
is the case for an isolated neuron). We consider two types
of control: partial, whereby information lasts for about
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500 ms, and total, whereby it lasts forever. Referring to
brain operations, the first control is useful, since it gives
time for a motor decision, the second one would be useless,
because the neuron would be unable to respond to further
stimuli.

The electric activity of chaotic neurons is represented by
a sequence of equal short pulses of 1 ms duration (spikes),
separated by erratic interspike intervals (ISI).

Such a dynamic behavior was first studied in a laser with
feedback by my group and called homoclinic chaos
(HC).The first observation was followed by an investiga-
tion of the spike synchronization, either by application of
an external clock or by mutual coupling of many identical
chaotic systems (see Arecchi & Meucci, 2008 for details
of the investigation).

This synchronization effect suggested its application to
the feature-binding phenomenon in the brain (Arecchi,
2004). In humans and most mammals, the retina is a mosaic
of many photoreceptors separately channeling their infor-
mation to the visual cortex (V1) through one million fibers.
Each fiber is an elementary feature detector, thus V1 should
receive plenty of uncorrelated information. Yet, if the cog-
nitive agent is exposed to two relevant features all fibers
whose receptive field is exposed to one feature synchronize
their spikes even though they are individually receiving dif-
ferent inputs (Singer, 2007). This means that the original
bottom-up signal from the retina has been modified by top-
down corrections that imply an interpretation (Carpenter &
Grossberg, 2003)

To observe such a behavior, it was crucial to resolve the
spikes traveling on a single axon; this was obtained by plac-
ing several microelectrodes in the brains of laboratory an-
imals (Singer, 2007).

Such an invasive method is forbidden on human sub-
jects, however, a clever transient analysis has been report-
ed (Rodriguez et al., 1999). A human subject, equipped
with a 64-electrode EEG apparatus, was exposed at time
t = 0 to either (1) a meaningful slide or (2) a meaningless
one, where no sensible feature could be extracted. The fre-
quency-time plots of the EEG in the gamma band (centered
at40 Hz) show that, in both cases, there is a signal at around
200 ms (mainly coming from the electrodes placed close to
V1 and to the PFC (prefrontal cortex), then nothing for
more than half a second and then again a signal at around
800 ms (mainly from the electrodes near PFC and the motor
and language areas). The difference between (1) and (2)
seems not qualitative but only quantitative.

If, however, the EEG signal is filtered out, then strong
evidence of phase synchronization appears. At 200 ms, in
the meaningful case V1 synchronizes with PFC; no syn-
chronization occurs in the meaningless case. Thus, we see
a transfer of relevant information from V1 to PFC, which
in fact should appear as a mutual spike synchronization if
we were able to resolve the single neuron signals as in the
animal experiment. At 800 ms, in both cases there is a trans-
fer from the PFC to the language areas; the subject reacts
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GWS (global workspace) dynamics modified
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Figure 1. The GWS (global workspace) hypothesis: A net-
work is fed by perceptual data consisting of bottom-up sen-
sorial stimuli dressed up by top-down signals from memo-
ry, evaluation and attentional systems. As a result of the
GWS elaboration, a signal emerges toward the motor sys-
tems.

by speaking about the stimulus and saying that he/she is
seeing a meaningful or meaningless slide, respectively.

There has been a large amount of investigation of the
temporal region up to around 1 s.

As discussed above, the PFC acts as an arrival station for
different sensorial channels (visual, auditory, etc.) and as a
departure station for the activation of motor and language
areas.

Baars (1989) has formulated the GWS (global work-
space) hypothesis, which has been extensively elaborated
by Dehaene and Naccache (2001) and by Dehaene, Kersz-
berg, and Changeux (1998). The way GWS operates is ex-
plained by Figure 1. A sensorial stimulus, duly encoded,
arrives at the perceptual systems (bottom-up signal) but its
processing is affected by the agent’s activity, which takes
the forms of past memories, values, and attentional mech-
anisms (top-down recoding). The combination of bottom-
up and top-down signals is “read” by the GWS and trans-
formed into appropriate reactions that drive the motor and
language areas.

A dynamic model (Leyva, Allaria, Boccaletti, & Arec-
chi, 2003) works as follows. Consider an array of HC sys-
tems, each one simulating a single neuron. The neurons
have nearest-neighbor coupling, whose strength e models
the amount of top-down perturbation. In the absence of a
bottom-up input, each neuron yields HC spikes, depending
on the initial condition and the amount of coupling. For e =
0 each neuron emits uncorrelated spikes. As e increases the
spikes build strong mutual correlations, until the whole ar-
ray is synchronized. Synchronization is not isochronism,
that would be equal time of occurrence of spikes at different
sites, but rather equal separation Tj of the spikes in adjacent
sites.
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Figure 2. (Upper) Four successive sites with unequal spike
separations Tg. The collection of all Tg is characterized by
a probability distribution P(7g). We measured the disorder
by the amount S of entropy of P(7Tg), using the Shannon
formula. As we increase the coupling e, at a given threshold
the entropy suddenly sinks; set Tg has become ordered, but
in a semantic way, in the absence of an input. In order to
transform the coupled array into a semantic network, we fix
the coupling at es below the threshold value and apply input
pulses of increasing amplitude A’, A”. Correspondingly,
there are time windows of low entropy (collective synchro-
nization) of variable durations Dt. The various Dt encode
the different inputs.

(Lower) Numerical experiment (Ciszak et al., 2009): time
evolution of entropy S for an array of 30 coupled systems
with coupling below the threshold. At the first site an input
pulse of duration d¢ = 1 IST and amplitude either A = 0.09
(left) or A = 0.104 (right) are applied at time ¢ = 40 ISI. In
the first case, the input is insufficient to trigger a collective
synchronization; in the second case, the stimulus induces
an entropy reduction lasting for about 10 ISI.

So far, we have explored the role of the neuron cou-
plings. The resulting collective synchronization is aseman-
tic, as it occurs in the absence of an external (bottom-up)
stimulus.

If, instead, we want to consider a semantic situation, we
set the coupling low enough not to yield spontaneous syn-
chronization, but sufficiently high to mimic an alert agent
(Figure 2). Then the application of external inputs induces
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Figure 3. A dynamic model of GWS. GWS sums up all the
spike amplitudes arriving from the array, which is equiva-
lent to comparing the arrival times of the spikes from the
array of coupled neurons where collective synchronization
has occurred. Indeed, if the synchronized cluster is large
enough, then many spikes from different sites sum up with-
in a small time interval Dt, yielding a large signal, well
above the low background corresponding to unsynchron-
ized spike arrivals.

synchronized states lasting for a time depending on the
stimulus (semantic encoding). As shown in Figure 2, the
windows of ordered (low entropy) states depend on both
the input and the coupling, thus, they represent a cognitive
act as a combination of the stimulus and the agent’s inter-
pretation. The cognitive state appears as a time window of
low entropy (Ciszak, Montina, & Arecchi, 2009).

Figure 3 shows how a GWS, seen as an entropy reader,
can transform that cognition into an action. The amount of
the top-down “dose” is crucial in shaping the cognition.

Do we claim that the final decision stemming from the
GWS is an act of free will?

Not at all! Thus far we have utilized material stored in
previous cognitive sessions, representing a finite repertoire.
A cat, for example, seems free in its playing with prey; in
fact, it is exploiting one option from a finite set it has
learned during its training activity.

Even though we have called the large variety of possible
elaborations creativity, it represents a finite set and, thus, it
can, in principle, be interpreted in a deterministic fashion.

Altogether different will be the cognitive operation (B) that
is peculiar to humans and where we will provide evidence of
nondeterministic decisions, that is, the basis of free will.

Cognition (B) as Comparison of
Different Presemantic Slots. The
Inverse Bayes Inference

Bayes Inference

Thomas Bayes, looking for a reliable strategy to win games,
elaborated the following probabilistic argument (Kriegel,
2006).

Hogrefe Publishing

Let us formulate a manifold of hypotheses / about the
initial situation of a system, attributing to each hypothesis
a degree of confidence expressed by an a priori probability
P(h). Any hypothesis, introduced as input into a model of
evolution, generates data. Let us assume that we know the
model and, hence, can evaluate the probability of the data
conditioned by a specific hypothesis i; we write it as P(da-
talh). The model as an instruction to a computer represents
an algorithm; it generates different data for different 4. If
now we perform a measurement and evaluate the probabil-
ity P(data) of the data, we must conclude that there is an &
more plausible than the other ones, precisely the one that
maximizes the probability conditioned by the data P(hlda-
ta), that we call the a posteriori probability of A.

This procedure is encapsulated in the formula, or theo-
rem, of Bayes, that is

P(hldata) = P(h) [P(data\h)/P(data)]

To summarize, the a posteriori probability of /, conditioned
by observed data, is given by the product of the a priori
probability of 4, times the probability P(datalh) of the data
conditioned by a given A, that we call the model, and divid-
ed by the probability P(data), based on a previous class of
trials.

Starting with a large number of presumed hypotheses £,
the occurrence of the data selects the 2* that satisfies the
above relation. Successive applications of the theorem
yield an increasing plausibility of 4 *; it is like climbing a
mountain of probabilities along the maximum slope, up to
the peak. After each measurement of the data and conse-
quent evaluation of the a posteriori ~#*, we reformulate a
large number of new a priori A relative to the new situation,
and so on. In this way, we climb a mountain, whose vertical

BAYES

Figure 4. Successive applications of the Bayes theorem.
The procedure is an ascent of the probability mountain
through a steepest gradient line. Notice that Darwinian evo-
lution by mutation and successive selection of the best fit
mutant is a sequential implementation of Bayes theorem.
Also the investigation style of Sherlock Holmes is Bayes-
ian.

Darwin = Bayesian strate
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coordinate measures a probability while the horizontal
plane represents the variables that rule the problem (Figure
4).

The evolutionary strategy put forward by Darwin, as se-
quences of mutations and selection, is an application of
Bayes theorem, once we equate fitness with the probability
mountain to be climbed. This procedure can be automatized
on a computer, building an expert system that elaborates
the experimental data formulating a diagnosis; it is useful
in medicine, business, etc.

The procedure is asemiotic, that is, it handles symbols
without raising questions on meaning. Some Al (artificial
intelligence) experts have considered it as a paradigm of the
way our mind operates.

However, this automatic procedure has a fundamental
limitation. Once the peak has been reached, no further pro-
gress is possible; any further application would be a disas-
trous downhill trend. Having been limited by the unique-
ness of the model or algorithm P(datalh), the peak cannot
be taken as the truth; at most, it represents the best we can
do with the selected model.

Realizing that there are other possible models, and that
the climbing can take place elsewhere, implies going be-
yond the empirical evidence provided by measurement and
discovering a meaning in the observed aspects of the world
under the guidance of the cultural background of the inves-
tigator.

We call meaning the existence of many peaks; it goes
beyond information, which quantifies the increase of prob-
ability while climbing a single peak. We call semantic com-
plexity the number of different peaks, that is, of different
Bayes strategies we can undertake (Figure 5). Notice that
it is a fuzzy concept, since the multiple peak landscape
changes as our degrees of comprehension increases. Figure
5 is purely indicative; in general, the variables that rule our
problem are more than two (for sake of presentation, we
plot a horizontal plane as in Figure 4, even though the rep-
resentative space should have as many dimensions as the
variables) and the peaks more than three (as done for con-
venience in the figure). In fact, in models of complex sys-
tems, the number of different peaks increases exponentially
with the number of variables. Furthermore, our interaction
with the environment changes the number of peaks (think
of a financial investor; the shape of the market changes as
new investments are performed). For an insight on this mat-
ter, I refer to a book of mine (Arecchi, 2007a, 2007b).

The jump from one model to another is a nonalgorithmic
operation.

The question arises: Can we foresee an evolution of the
computing machines, so that they can swap algorithms by
an adaptive procedure? The answer is yes within a finite
repertoire. The swapping is based on a variational proce-
dure whereby the next step is just a small variation of the
previous one, which by itself has to be stable. Such is Hol-
land’s genetic algorithm (Holland, 1975).

In general, however, the selected Bayes model can be
unstable and variations can introduce discontinuities. Fur-
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Figure 5. Semantic complexity. A complex system is one
with a many-peaked probability landscape. The ascent to a
single peak can be automated by a steepest gradient pro-
gram based on a fixed algorithm as in the previous figure
(Bayes without semiosis). On the contrary, to jump to other
peaks, and thus to continue the Bayes strategy elsewhere,
is a nonalgorithmic act of creativity, implying a holistic
comprehension of the surrounding world. We call “mean-
ing” the multipeak landscape and “semantic complexity”
the number of peaks. We call “creativity” the nonalgorith-
mic jump from one model to another.

thermore, in the human case we can make an infinite use
of finite resources, by building over the course of time Chi-
meras, that is, new models which combine parts of previous
models in new ways.

This implies violating the set of rules previously stipu-
lated. We do not see how a machine can violate the plan
upon which it has been designed. The nonalgorithmic jump
enables a creative mathematician to grasp the truth of prop-
ositions compatible with a set of axioms but not accessible
through the formalism one is using; this is the 1931 Goedel
theorem (Arecchi, 2007b).

(B) Cognition as Inverse Bayes Inference

At a perceptual level, recoding in terms of past memories
seems the most obvious type of consciousness. In fact, the
top-down mechanism can be just an automatism. The
800 ms preceding a motor decision do not require explicit
consciousness; free choice emerges on a much longer time
scale as we repeat the same experiment with a memory of
the best result.

We should account for two notions of consciousness.

(A), the implicit one, postulates a GWS, that is, an op-
eration room for elaborate data acquired over different
channels (auditory, visual). It operates on the global stim-
ulus of large neuron arrays. The time associated with (A),
called by Poeppel a presemantic island (Poeppel, 1997,

Hogrefe Publishing



F. T. Arecchi: Dynamics of Consciousness 147

2004, 2009), can be up to 3 s, as the average switch time in
the perception of ambiguous figures or in binocular rivalry.
Within this island, the dynamic constitution of a collective
state can precede awareness without having to raise philo-
sophical problems of free will (Libet, 2004).

Explicit consciousness (B) is required to connect slots
confined to different presemantic islands. The cognitive
subject must be aware of him/herself combining pieces be-
longing to separate perceptions into a unique semantic
whole. In doing this an articulated language is necessary.

A 3 s unit appears as the most convenient time window
within which to compare each separate retrieved piece. In-
deed, this is the best synchronization time in collective mu-
sical performances or in spoken narratives, as discussed ex-
tensively by Poeppel (Poeppel, 2004, 2009).

At this point I introduce the inverse Bayes inference.

If we have a sequence of acquired cognitions, we do not
have to look for the most plausible hypothesis /2%, since it
is already contained in the data stream. We simplify nota-
tion by writing the left hand side of Bayes formula as:

P(h*) = P(hldata)

The unknown is no longer 4%, but rather the most adequate
model that binds the subjective hypotheses & with data d
and the already shown A * By inversion of the original
Bayes formula we then have:

P(datalh) = P(data) P(h*)/P(h)

In other words, (B) knowledge does not imply a model; on

the contrary, (B) retrieves the most adequate model to con-

nect the subjective hypotheses /4 with the reality stream, d

and h*.

Retrieving the best P(datalh) establishes an ontology,
that is, truth can be defined according to Thomas Aquinas
as “adaequatio intellectus et rei.”

— Question: How does this strategy of inverse Bayes in
semantic sequences compare to chaos control in dynam-
ic sequences?

— Answer: In the same way as the chaotic dynamic is sen-
sitive to the initial conditions (whence the information
loss), here the model P(datalh) is sensitive to the accura-
cy of h.

In this case, the recoding consists of the “invention” of dif-
ferent models P1(datalh)), P2(datalh)) . . ., until one reaches
the best one binding the chain of data.

One might object that Holland’s algorithm (Holland,
1975) already explores different models; but it proceeds by
gradual variations. Here instead we have a discontinuous
jump, as it emerges from well-known instances of scientific
creativity. Recall, for example, that Maxwell electromag-
netism unified three distinct areas of investigation, namely,
electricity, magnetism, and optics; however, the amount of
knowledge available in those three areas was not sufficient
to deduce the Maxwell equations.
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Conclusion

We have explored two kinds of recoding, namely, (A) cor-
responding to a presemantic island, which relies on a lim-
ited repertoire; it is common to animals and a few of them
are much better off than us (I would not like to meet a
leopard in the wild ...) and (B) that relies on self-con-
sciousness and establishes an ontology.

The totality of the current literature on consciousness (J.
Searle, A. Damasio, C. Koch, D. Dennett, J. Fodor, G. Edel-
man, G. Tononi, etc.) deals with the (A) time scales. Only
Poeppel (Poeppel, 1997, 2004, 2009) has stressed the sep-
aration of the two time scales.

In a recent paper, Klonowski (2009) has emphasized the
occurrence of two time scales widely separated for psycho-
physical processes, namely a short one for emotional states
and a long one for thinking processes. From a dynamical
point of view, both processes are treated by return maps,
and the difference of time scales provides a simplified treat-
ment. Consciousness is associated with the longer time
scale.

In this regard, I have two remarks, namely, (1) no quan-
titative values are assigned to the two times, overlooking a
plethora of experimental facts reviewed by Poeppel (Poep-
pel, 1997, 2004, 2009); (2) both processes are considered
within the same dynamical formalism, whereas I discrimi-
nate between a dynamic process (A) where control of chaos
plays a crucial role, and a linguistic endeavor (B), whereby
a past event is retrieved from memory and compared with
a new apprehension, thus reaching the most satisfactory
comparison via an inverse Bayes process.

The dynamic process (A), (which seems to correspond
to the whole “psychophysical” process in Klonowski,
2009), refers to apprehension and consists of stretching the
duration of the GWS collective state in order to stimulate
an appropriate motor reaction; in (A), consciousness does
not seem to play a crucial role, even though the coherent
GWS state may be accompanied by awareness.

On the contrary, in the (B) comparison of two different
events, which triggers the inverse Bayes, self-conscious-
ness is crucial insofar as the subject has to control the mu-
tual correspondences of the two events in the effort to reach
the best matching, which yields the judgment.
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