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Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback
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Chaotically spiking attractors in semiconductor lasers with optoelectronic feedback have been recently
observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic
scenarios). Since light-emitting diodes display the same dynamics and are much more easily controllable,
we use one of these systems to complete the attractor analysis demonstrating experimentally and theoretically the
occurrence of complex sequences of periodic mixed-mode oscillations. In particular, we investigate the transition
between periodic and chaotic mixed-mode states and analyze the effects of the unavoidable experimental noise
on these transitions.
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Oscillatory dynamics in chemical, biological, and physical
systems often takes the form of complex temporal sequences
known as mixed-mode oscillations (MMOs) [1]. Typical
time traces are characterized by a mixture of L large-
amplitude relaxation spikes followed by S small-amplitude
quasiharmonic oscillations, while oscillations of intermediate
amplitude do not occur. Sequences of this type are ubiquitous
in nature and were originally observed in chemical systems
more than 100 years ago [2], with the Belouzov-Zhabotinsky
reaction being the most thoroughly studied example [3–6].
More recent studies involved surface chemical reactions [7–9],
electrochemical systems [10,11], neural and cardiac cells
[12,13], calcium dynamics [14], and plasma physics [15], to
name just a few. As some bifurcation parameter is varied,
MMOs can be ordered in periodic-chaotic sequences, in which
intervals of periodic states are separated by chaotic states
resembling random mixtures of the adjacent periodic patterns.
In other cases, these mixtures can form periodic concatenations
following the Farey arithmetic and plotting of a suitably
defined winding number against the bifurcation parameter
leads to a devil’s staircase.

Several mechanisms can be at the origin of these phe-
nomena [1], for instance, the quasiperiodic route to chaos
on an invariant 2-torus [16] and the loss of stability of a
Shilnikov homoclinic orbit [17,18]. However, periodic-chaotic
sequences and Farey sequences of MMOs do not necessarily
involve a torus or a homoclinic orbit, but can occur also
through the canard phenomenon [19]. Here a limit cycle born
in a supercritical Hopf bifurcation experiences the abrupt
transition from a small-amplitude quasiharmonic cycle to
large relaxation oscillations in a narrow parameter range
(canard explosions) [20]. Although this sudden transition can
be easily misinterpreted as a homoclinic bifurcation, here
an exact homoclinic connection to a saddle focus does not
occur and therefore application of the Shilnikov theorem is
not allowed. Such behavior is typical in three-dimensional
(3D) multiple-time-scale dynamical systems, which can be
described in terms of a fast 2D oscillatory subsystem,
coupled to a slowly evolving variable acting as a quasistatic
bifurcation parameter. The strong separation of time scales
may induce the switch between periods of small amplitude

and relaxation oscillations and makes the flow to pass very
closely to the saddle-focus stationary state, thus simulating
trajectories close to the Shilnikov condition. For this reason,
canard phenomena in 3D systems are often referred to as
incomplete homoclinic scenarios [21]. Although most of the
studies of this dynamics have been carried out in chemical
systems, incomplete homoclinic scenarios have been recently
predicted and observed also in semiconductor lasers with
optoelectronic feedback [22,23] and optical cavities with
movable mirrors [24,25]. In these works, attention has been
focused on the chaotically spiking regime, a special kind
of MMO where large pulses are separated by an irregular
number of quasiharmonic oscillations. In this Brief Report
we complete the dynamical picture by extending the analysis
also to regular types of MMOs. In particular, we investigate
experimentally the transition between periodic and chaotic
mixed-mode states and analyze the effects of the unavoidable
experimental noise on these transitions.

The system here considered is a GaAs light-emitting diode
(LED) (with a peak wavelength of 870 nm and spectral
width of ∼50 nm) with ac-coupled nonlinear optoelectronic
feedback. The LED is driven by a constant positive voltage
via a current-limiting resistor (3 k�) in series. The output
light is sent to a photodetector producing a signal directly
proportional to the optical intensity in the whole operation
range. The corresponding voltage signal is high-pass filtered
(with a cutoff frequency of γf ∼ 1 kHz) and amplified by
means of a variable-gain amplifier characterized by a nonlinear
transfer function of the form fF (w) = Aw/(1 + s ′w), where
A is the amplifier gain and s ′ is a saturation coefficient. The
feedback voltage signal is then added to the dc voltage driving
the LED by means of a mixer.

As will be clarified later, a key element to observe MMOs in
optoelectronic devices is the existence of a threshold for light
emission. In semiconductor lasers this is the current value at
which gain (stimulated emission) overcomes the cavity losses.
In LEDs the main recombination mechanism is spontaneous
emission and the emitted light is simply proportional to the
current passing through the device. However, as in electronic
diodes, the current-voltage characteristics of a LED are highly
nonlinear. With no external applied voltage, an equilibrium
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FIG. 1. Experimental time series of the optical intensity as Vn

is decreased: (a) Vn = 0.0558, (b) Vn = 0.0392, (c) Vn = 0.0242,
(d) Vn = 0.0163, (e) Vn = 0.0046, and (f) Vn = 0.0027.

condition is reached in which a built-in potential Vbi prevents
electron and hole diffusion across the p-n junction. A current
flow as well as the consequent emission of light via electron-
hole recombination is established only if a forward voltage
Vd > Vbi is applied to the junction. As a consequence, the
light-voltage curve shows a threshold voltage approximately
equal to Vbi.

In order to characterize the system dynamics, we define
the dimensionless control parameter Vn = (V0 − Vth)/Vth,
where V0 is the externally applied voltage, and assign the
symbolic notation LS to the MMO states, where L gives
the number of large-amplitude oscillations and S the number
of small-amplitude oscillations in a single periodic pattern.
The relaxation oscillation regime 10 [see Fig. 1(a)] is the
dominant behavior of the system, occurring in a very wide
voltage range above threshold. The typical sequence of MMO
states that is observed as Vn is decreased is shown in
Figs. 1(b), 1(c), and 1(d), displaying 11-, 12-, and 13-periodic
states, respectively. At lower values of Vn, a chaotically
spiking regime sets in, where large-amplitude oscillations
are separated by an irregular number of small-amplitude
oscillations [see Fig. 1(e)]. Decreasing Vn even further, the
mean interspike interval increases [Fig. 1(f)] until large-
amplitude spikes disappear and the system eventually reaches a
stationary state. The transition between such a stable state and
the chaotically spiking regime, occurring through a cascade
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FIG. 2. Plot of the winding number R as a function Vn. Insets:
Experimental time series of the optical intensity corresponding to
Vn = 0.0448 and 0.0275.

of period-doubled and chaotic (small-amplitude) attractors,
has been investigated in detail in Refs. [22,24]. Here we
mainly focus on transitions between different periodic MMO
states. The complete bifurcation diagram corresponding to the
mixed-mode wave forms can be represented by plotting the
winding number R = L/(L + 〈S〉) as a function of the control
parameter (see Fig. 2). In our system we have always L = 1
and hence states 10, 11, 12, and 13 have R equal to 1, 1/2, 1/3,
and 1/4, respectively. In the transition between these states,
random concatenations of the adjacent patterns are observed.
The insets in Fig. 2 show two examples of these concatenations
between 10 and 11 states and between 11 and 12 states.
Here R is calculated from the mean value of S over all the
periodic intervals in the time series. As a result, in a transition
between 1S and 1S+1, R changes between the values 1/(1 + S)
and 1/(1 + S + 1), depending on the number of 1S or 1S+1

patterns observed in the time series. Although similar to the
periodic-chaotic sequences often observed between periodic
MMO states, the model that we introduce later does not show
such concatenations. This suggests that this behavior could be
due to the effect of noise, which sporadically drives the system
over the transitions. Therefore, we cannot resolve the details
of the devil’s staircase that should accompany the transition
between periodic mixed-mode states. In the chaotically spiking
regime (Vn � 0.013) R is observed to continuously decrease
to zero with the increasing mean interspike interval and the
subsequent disappearance of large-amplitude spikes.

The simplest approach is to phenomenologically model the
LED as an ideal p-n junction with a uniform recombination
region of cross-sectional area S and width �. The system
dynamics is then determined by three coupled variables, the
carrier (electron) density N , the junction applied voltage Vd ,
and the high-pass-filtered feedback voltage Vf , evolving with
very different characteristic time scales

Ṅ = −γspN + μN (Vd − Vbi)

�2
, (1)

CV̇d = V0 − Vd + fF (Vf )

R
− eμNS(Vd − Vbi)

�
, (2)

V̇f = −γf Vf + k�̇, (3)

047201-2



BRIEF REPORTS PHYSICAL REVIEW E 84, 047201 (2011)

where γsp is the spontaneous emission rate, μ is the carrier
mobility, C is the diode capacitance (here assumed to be
voltage independent for simplicity), V0 is the dc bias voltage,
R is the current-limiting resistor, fF (Vf ) is the feedback
amplifier function, e is the electron charge, k is the pho-
todetector responsivity, and � is the photon density, which
is assumed to be linearly proportional to the carrier density
� = ηN , where η is the LED quantum efficiency. Equation (1)
indicates that N in the active layer decreases due to radiative
recombination and increases with the forward injection current
density J = eμN (Vd − Vbi)/�. Nonradiative recombination
and carrier generation by optical absorption have been
neglected since we checked that they do not significantly
change the dynamics. Equation (2) is the Kirchhoff law of
the circuit (resistor-ideal diode) relating the junction voltage
Vd to the dc applied voltage V0 [the second term in Eq. (2)
is the current flow across the diode I = JS]. Equation (3)
describes the nonlinear feedback loop where the voltage
signal coming from the detector k� is high-pass filtered and
added to the dc bias through the amplifier function fF (Vf ).
Consider just the solitary LED equations (1) and (2). A finite
stationary carrier density, increasing linearly with V0, is found

only when Vd > Vth ≡ Vbi + γsp�
2

μ
; otherwise, the only station-

ary solution is N = 0 and Vd = V0 (zero current). Accordingly,
light emission begins when the applied voltage V0 exceeds
the threshold voltage Vth. By introducing the dimensionless
variables x = eμRSN

�
, y = μ(Vd−Vbi)

�γsp
, and w = eμRS

kη�
Vf − x and

the time scale t ′ = γspt Eqs. (1)–(3) become

ẋ = x(y − 1), (4)

ẏ = γ [δ0 − y + f (w + x) − xy], (5)

ẇ = −ε(w + x), (6)

where f (w + x) ≡ α w+x
1+s(w+x) , δ0 = (V0 − Vbi)/(Vth − Vbi),

γ = 1/RCγsp, ε = γf /γsp, α = Akη/eγspR�S, and s =
kη�s ′/eμRS.

Notice that the model Eqs. (4)–(6) is identical to that de-
scribing a single-mode laser diode in the presence of the same
optoelectronic feedback loop [22]. In this case, x and y are
suitably normalized photon and population-inversion densities
and γ is the ratio between photon and carrier lifetimes. The
dynamical mechanism underlying MMOs in such a system has
been analyzed in detail in Ref. [22]. Here we just summarize
its main features, discussing the similarities between laser and
LEDs dynamics. In correspondence with the laser threshold
δ0 = 1, the system undergoes a transcritical bifurcation where
the zero-intensity solution and the lasing solution become
unstable and stable, respectively. The introduction of a third
degree of freedom (and a third, much slower time scale)
describing the nonlinear ac feedback loop has two main
effects: (i) Above threshold the stationary lasing solution loses
stability through a supercritical Hopf bifurcation and is then
followed by a cascade of period-doubled and chaotic attractors
of small amplitude and (ii) the system becomes a singularly
perturbed system of three time scales with a one-dimensional
S-shaped slow manifold. On this manifold, the lower attractive
branch is a straight line given by the zero-intensity solution
{x = 0,yw = δ0 + f (w),w}, while the middle repulsive and
upper attractive branches are determined by the feedback

nonlinear transfer function [22]. Since two branches rapidly
attract all neighboring trajectories while the middle branch
repels them, canard and relaxation cycles arise. However,
in 3D phase space, there is also room for more complex
scenarios, where relaxation orbits are separated by a certain
number of small-amplitude oscillations surrounding the steady
state of the system P . When lying on the middle repelling
branch, this point is a saddle focus and a trajectory rotates
around P before switching to the other stable branch of the
manifold. The number of these rotations, as well as the periodic
or erratic nature of MMOs, is determined by the rates at which
y and w vary in the vicinity of P . This is not simply related
to γ and ε, but also depends on the bifurcation parameter
δ0. Therefore, apart the feedback loop, the key element to
observe this dynamics is a 2D solitary system possessing a
threshold and governed by two different characteristic time
scales. In this framework, LEDs are dynamically equivalent to
semiconductor lasers.

Figure 3 shows some of MMO patterns, obtained by
numerical integration of Eqs. (4)–(6). As the parameter δ0

is decreased, we observe the complete sequence of transitions
going from the 10 state to the chaotically spiking regime, thus
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FIG. 3. Time series of the variable x as obtained by numerical
integration of Eqs. (4)–(6): (a) δ0 = 1.08, (b) δ0 = 1.07, (c) δ0 =
1.067, (d) δ0 = 1.065, and (e) δ0 = 1.06. The fixed parameters are
α = 1.002, γ = 3.3 × 10−3, ε = 4 × 10−5, and s = 0.2.
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FIG. 4. (a) Plot of the winding number R as a function of δ0 for the
model equations (4)–(6). (b) Same as in (a), but under the white-noise
effect of amplitude D = 3 × 10−5. Insets: Time series of the variable
x corresponding to δ0 = 1.075 and 1.069. Other parameters are the
same as in Fig. 3.

reproducing qualitatively the experimental results. However,
in contrast to the experiment, the detailed bifurcation diagram
in terms of the winding number R reveals an extraordinary

complexity [see Fig. 4(a)]. Between the main 1S-1(S+1)

transitions, the system displays a (presumably infinite) number
of periodic mixed-mode windows and, in some cases between
them, chaotically spiking time series. A detailed study of
Eqs. (4)–(6) showing the complex organization of MMOs
domains in the parameter space has been recently reported
in Ref. [26]. In our experiment, however, these narrow
intermediate windows have not been observed. In their place,
the system exhibits random concatenations of adjacent states
1S-1S+1 (see Fig. 2), unobserved in numerical simulations.
These differences can be explained considering the presence
of experimental noise, whose effects are particularly important
in the vicinity of bifurcations. Assuming the driving voltage
noise as the dominant noise source in the system, we performed
numerical simulations by adding a small stochastic term to the
voltage equation (5). The corresponding plot of R as a function
of δ0, reported in Fig. 4(b), confirms that one of the noise effects
is to sporadically drive the system over adjacent transitions.
This is evidenced by the time series in the insets in Fig. 4(b),
where random concatenations of parent states similar to those
observed in the experiment are displayed. A further effect of
noise is to hide the narrow intermediate windows between the
main periodic states. However, their existence is revealed by
the presence of some errors, as shown, for instance, in the upper
inset in which a 14 event in a 11-12 concatenation is observed.
Since in the experiment such errors have not been reported,
we conclude that probably these narrow periodic windows are
simply less pronounced than in the model.

In conclusion, we reported experimental evidence of com-
plex periodic mixed-mode oscillations in a light-emitting diode
with optoelectronic feedback. The complete transition diagram
between periodic and chaotic mixed-mode states has been
characterized and the role of experimental noise on these
transitions has been investigated. The experimental results
have been qualitatively reproduced by a simple physical model
of the system.
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