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We investigate the collective radiative behaviour of three level atoms with two degenerate levels in the ground state, with
particular emphasis on the role of the ground state atomic coherence. When put in a cavity resonator, these atoms yield not
only tristability, but also a higher-order bistability, a quadristability and a region of self generated oscillations.

Recent calculations [1,2] on highly simplified models

of three level atoms (doubly degenerate ground state
with levels 1 and 2 radiatively coupled, via different
selection rules, to a unique excited state 3), have pre-
dicted tristable behaviour when driven by two suitable
fields each fulfilling one of the above mentioned selec-
tion rules. These calculations do not consider atomic
coherence effects but are simply based on a population
balance.

Following a more realistic scheme for Na-atoms un-
der near resonant Dy illumination with two circular
polarization o, and ¢_, we have investigated the influ-
ence of a finite coherence time on the dynamical be-
haviour. More precisely we have the following scheme
(see also fig. 1):

i) level 1 (2) is exclusively coupled to level 3 by the
Am =1 (—1) selection rule, thus it can only interact
via 0, (0_) radiation,;

ii) introducing a 3 X 3 density matrix oy (,7=1,2
3) to account for occupation probabilities p;; and
atomic coherences p;; we must take into account their
decay rates, namely; the spontaneous decay rate y; =
0.6 X 108 s=1 of the upper population P33;7 the de-
cay of py3 and py3 which is larger (5 > v;) and in-
creases with the buffer gas pressure in the working cell;
a much smaller I'; = 1.4 X 103 s~! for the ground state
population difference p5, — py; which is the source for
the class of socalled pumping phenomena [3] and is
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Fig. 1. Level scheme of Na-atoms under simultaneous o, and
o irradiation at the D transition; v;/2 spontancous decay
rate of population from level 3 to ground state; I'y/2 decay
rate of population difference between states 1 and 2.

responsible for the very low power onset of optical bi-
stability [4]; finally I"y = m1I'; for the decay of ground
state coherence p1, which is also very small and whose
crucial role is already known from a large body of
measurements [3,5,6]. For simplicity we do not dis-
cuss the role of Doppler broadening which can be
taken into account as in ref. [4].

Experimental evidence of optical tristability has
been recently given [7] by shining equal amounts of o,
and o light on a Na filled Fabry-Perot and measuring
the unbalance in the two output fields. A qualitative
explanation of that effect requires only a population
balance as done in ref. [1]. Here we predict some new
coherence effects missed in refs. [1] and [2], that is, a
finite value of I'y induces qualitative differences with
the previous treatments [1,2]. Indeed when shining a
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linearly polarized field, we obtain the following new
results:

i) The optical tristability region disappears for high
fields and a new optical bistable branch appears. This
new branch is different from the one reported in ref.
[4] which was instead associated with a circularly po-
larized input field.

ii) For I'; of the same order of magnitude as Ty,
the evolution requires coupling of three equations and
leads to oscillatory instabilities whereas the limit m — o
of ref. [1] is described by a single equation leading on-
ly to fixed point attractors. Ref. [2], after having put
m == reintroduces n > 2 equations by an unrealistic
set of assumptions on the field relaxation times.

In the presence of two circularly polarized light
fields, counterrotating with respective amplitudes £, |
E_ and Rabi frequencies a = pE, 2%, = uE _ [2h,
both tuned at the frequency wy =wy + A, the dynam-
ics is rules by the following equation

=[H,p] +Ap, n

where p is the density 3 X 3 matrix, the dot stays for
the time derivative, D stays for the above described
damping mechanisms and the hamiltonian matrix f{ in
the interaction representation is given by

0 0 «
H=—10 0 8 (2
ot B A

As in ref. [4] we consider e.m. intensity levels low
enough to never reach saturation on the 1-3,2-3
transitions, that is,

35*/7172 <1]. (3)

As a consequence, for any situation, level 3 is practical-
ly empty (p33 = 0) and the off-diagonal elements p 3
and p,3 relax so rapidly that p;3 = py3 = 0 and we can
take for them the equilibrium values (adiabatic elimina-
tion).

Hence the dynamics is like that of a two level sys-
tem (i,j = 1, 2). Introducing the quantities

o fy1yy <1,

Ry =py—pry
4)

Ry=piatpy, Ryp=i(py;—p12)s

with the normalization p,, + py = 1

and
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the relevant atomic equations become

Ry[T} =G5 (SyR3 — S3R5) — G181 —(G Sy +m) Ry,

Ry[T = Gy(S3R| — S1R3) — G 1S, — (G Sy + m) R,
R3/T} =G(S1Ry — SHR|)— G183 — (G Sy + 1) R5.
Here we have introduced (6)
G=Gy —iGy =(1—iA)/(1+A2), @)

where A = 3/72 is the field-atoms detuning normalized
to the transverse decay rate y,.

The first terms in the right hand sides of egs. (6)
represent a typical hamiltonian spin—spin interaction
between the atoms (R) and the field (S) pairs. The last
terms are the decays induced by collision processes.
The other terms represent the damping and pumping
terms coming from the depletion of population of level 3

Notice that in the atomic equations the two fields
do not appear separately but via the combinations (5).
Hence the process here considered belongs to the class
of two photon processes as other effects previously
considered [8].

Let us now write the coupled Maxwell equations for
the two fields o, § in the limit of slowly varying enve-
lope approximation and of the mean field theory [9]

1cu uN
Y= P13 tk[if, —a+ag],
; dw
B=- P23 +k[i0,—B+Bs], (8)

e, \/—ﬁ
where \/Tas =qp, \/_fﬁs =B are the input fields ex-
pressed in Rabi frequency units, 1/k is the field decay
time in the cavity, T is the mirror transparency and 6
is the mistuning between the optical frequency w; and
the cavity eigenfrequency we in units of the cavity
damping rate &, that is 8 = (w, — we)/k.

By replacing the equilibrium solutions for p3 and

P23
P13 = (G/27y) [a(1—R3) + (R, +iR )],
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P23 = —(iG/2y,) [B(1+R3) + a(R| —iR,)], )
into egs. (8) we finally obtain

&=k{-CGla(1-R3)+B(R, + iRy)]+i0, —a+ag},

B=k{-CGB(1+R3)+a(R, —iRy)] +i0, — B+ Bg},
(10)

(1n

where
C = wuN/[8\/27, k eyl

is the usual cooperation number [9].

By solving at equilibrium the system of eqgs. (6) and
(10) we obtain the following relations among the input
intensities

Y, = agag/Ty7,, Y_ =BgBs/T 172 (12)
and output intensities

X, =0a*/T'y,, X_=8"/T7,, (13)
Y,

X,

| C [m(SEH1+m) SytmD Y5 (1-m) 83 Sy (1-m)mS,] o }2
F(Sy,53)

AC [m(SE+(1+m)S+mD)+H(1—m)S37(1—m)mS) +3} 2
+ 3

F(Sy,S3)
0-3 (14)
where D = 1+ A2 and
F(Sgy,S83) = [S3 + (14 m) Sy + mD]
X (So +mD)+ A2(1—m) §3 (15)

is a common denominator.

Since k = 108 s~1 we adiabatically eliminate the
field equations (10) and reduce the system from seven
to three coupled equations whose stability analysis
around the stationary solution (14) can be performed
as usual by a linearization procedure.

All successive calculations refer for simplicity to a
symmetric input intensity Y =Y, =¥_.

In fig. 2 we have chosen a coherence ratio m = 20,
C'=280,6 = 0.5 and we plot the output X versus ¥ for
two different A values, namely 1.5 and 2. In both
cases, the main branch, having a large S shape, corre-
sponds to symmetric output X, =X _ (S3 =0in the
notation (5)). The second closed loop, which bifurcates
from the S branch at points 3 and 5, corresponds to
different X, and X _ (5 # 0) and if the lower branch
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Fig. 2. One of the output intensities (X, X_) versus the linear-
ly polarized input intensity ¥ = Yi,=Y_forC=280,6=0.5,
m = 21 and different A: a) A = 1.5, b) A = 2. The numbers
show the turning and bifurcation points. In a), between 2 and
5, the system displays oscillatory behaviour; in b) the system
shows only fixed point type solutions. The intensities are nor-
malized as in egs. (12), (13).

is read as X, the upper one must be attributed to X _
and vice versa. In the limit m — oo the bifurcation point
3 and the turning points 1 and 2 of the S5 =0 branch
go to infinity. Therefore the associated bistability,
which in our plots appears above the tristability region,
is no longer present. Such a bistability appearing with
linear, rather than circular [4] polarization is there-
fore an atomic coherence feature. This appears also
from the fact that ¥ values of turning points 1 and 2
increase linearly with m (this is shown in detail in fig.4).
In fig. 2a there are two tristable regions, one between
the tumning point 4 and bifurcation point 6, the other
between bifurcation points 8 and 3. The other regions
of the inner loop correspond to unstable cases. In the
range between 5 and 2 we have verified oscillatory
behaviour (see fig. 6); between 6—5 and 2--8, the pres-
ence of a stable branch may coexist with oscillatory
behaviour. For A =2 (fig. 2b) points 6 and 8 merge and
the whole inner loop, from 4 to 3, becomes stable. In-
tervals 4—5 and 23 are associated with stable regions

423



Volume 44, number 6

4

10

Fig. 3. One of the output intensities (X') versus the input in-
tensity (Y). Bifurcation point 3 lies on the negative slope
branch of the S shape curve. The parameters are C= 30, A =
1.0,6 = —0.5 and m = 18.

of the S loop, thus yielding tristability, while between
5 and 2 this S loop provides an unstable branch. Notice
that in the tristable region of fig. 2a, both X, and X _
jump above the common value of the §5 = 0 branch.
In fig. 2b however, between 4 and 5, X, and X_ have
increments of different sign. This corresponds to the
experimental situation of ref. [8].

To show how rich is the phenomenology for realistic
ranges of the control parameters, we display in fig. 3an
example where the bifurcation point 3 stems from the
negative slope section of S branch, while in fig. 2 it was
stemming from the lower section of the S branch. Com-
paring with fig. 2 we notice that no extra relevant point
exists between points 5 and 1, hence all this section of
the lower branch is unstable.

The details of the dynamical behaviour can be ap-
preciated in the phase diagram of fig. 4, which shows
the contour lines corresponding to the relevant points
1 to 8 of the equilibrium characteristics (either turning
points or bifurcation points) versus two of the control
parameters, namely the input intensity ¥ and the co-
herence ratio m, for fixed C=30,A=10and 0 =
—0.5. Domains characterized by different dynamical
behaviour have been denoted in fig. 4 by different
hatchings. Precisely, white regions (no hatching) de-
note monostable regions and the five different hatch-
ings correspond to the following regions: a) tristability:
b) bistability; c) limit cycle oscillations; d) coexistence
of monostability and limit cycle oscillations; ¢) quadri-
stability.

For the chosen set of fixed parameters C, A, and 0,
region e is rather small and it can be visualized only in
the magnified version of the phase diagram given in
fig. 4b.
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Fig. 4. Phase diagram versus the input intensity ¥ and the co-
herence ratio m for fixed C = 30,6 = —0.5 and A = 1.0. The
numbered lines show the dependence of the characteristic
points and bound the different phase domains. Hatching (a)
corresponds to tristability, (b) to bistability, (¢) to an oscilla-
tory domain, (d) to coexistence of monostability and oscilla-
tions, (e) to quadristability (see the enlarged part of the phase
diagram in fig. 4b).

Choosing m = 11 and varying the input intensity
within the unstable regions ¢, d of fig. 4 we have nu-
merically studied the changes in the period and ampli-
tude of the output oscillations. For Y = 384 slightly
above the Hopf bifurcation point 6, the amplitude of
the limit cycle is very small and the period (~2/(5T'1))
can be easily extrapolated from the imaginary part of
the eigenvalues of the linear stability analysis. Increas-
ing Y both the period and the amplitude increase giving
rise to well separated high spikes. Finally, close to the
upper boundary of the unstable region the oscillation
disappears in accordance to an unusual type of bifurca-
tion. The period diverges to infinity, but there is a large
growth of residence times on the low intensity level
and on a new intermediate value (~200). Such a behav-
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Fig. 5. The output intensity (X) versus the input intensity (Y)
in the quadristability region with C= 30, 6 = —0.5,A4=1.0,
m=5.85.

iour describes the collapse onto two stationary linearly
polarized solutions, an unstable one on the lower
branch, and a stable one on the upper branch close to
the turning point 2.

Our dynamics being ruled by three equations, we
should expect not only limit cycle oscillations but also
chaotic behaviour. In the limited region explored thus
far we have been able to show evidence of limit cycle
behaviour.

To summarize, with respect to previous schemes of
tristability [1,2] our consideration of realistic alkali
atoms has given the following new features:

i) A bistability branch which is neither the two level
bistability [10] with the saturation parameter as in eq.
(3) nor the bistability by optical pumping associated
with normalization (13). In such a case the dependence
on the coherence effect is emphasized by the associat-
ed saturation parameter which is (xa*/Fzyz.

ii) The appearance of a quadristability region (see
fig. 5) interlaced with tristable behaviour.

iif) The appearance of limit cycle oscillations, which
are incompatible with the simplified dynamics of ref.
[1]. The dynamics of ref. [2] leads also to periodic os-
cillations as well as to chaos. There, however, the con-
servation of time dependent field equations implies

damping times for the field much longer ‘than the atomic

ones, which has been here shown to be incompatible
with the optical pumping phenomenon, based on a

very slow transfer of population and coherence between
the two ground state levels.
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Fig. 6. Samples of oscillations for C= 30,6 = —0.5, A= 1.0
and m = 12 corresponding to different ¥ (384, 400, 500, 600,
700, 705, 708.1). The first one is slightly above the the Hopf
bifurcation point 6 (see fig. 4). It has been drawn a single peak
of the last limit cycle whose period is about 20. The time is
normalized to D/T'y.
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