Subkilohertz-narrowed, Frequency/phase-locked
Mid-IR Quantum Cascade Lasers for
High-precision Molecular Spectroscopy

F. Cappelli, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, P. De Natale
Istituto Nazionale di Ottica (INO) - CNR
and European Laboratory for Nonlinear Spectroscopy (LENS)
Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
davide.mazzotti@ino.it

Abstract: We narrow QCL radiation below 1 kHz by using two different techniques: frequency locking to a molecular transition and phase locking to an absolutely-referenced difference-frequency-generated source. Applications of both techniques are presented.

The interest in the development of narrow-linewidth mid-IR sources is related to advanced applications such as trace-gas sensing with high-finesse cavities, high-precision spectroscopy and frequency metrology. For all these fields, the mid-IR portion of the electromagnetic spectrum, named also “molecular fingerprint region”, is the best suited for investigating many molecules of atmospheric and astrophysical interest, whose strongest ro-vibrational transitions lie in this spectral region.

Our group has recently demonstrated that the spectrum of the radiation emitted by the a quantum cascade laser (QCL) can be narrowed through the optical injection technique [1]. We show that at least two more techniques can be used to narrow the spectrum of the radiation emitted by a QCL down to a subkilohertz level. The first one involves the frequency locking to a molecular absorption line detected by polarization spectroscopy [2]. This method permits to produce a dispersive signal that can be directly processed by a PID controller for correcting the laser frequency fluctuations. With this experiment we have demonstrated the possibility to reduce the QCL emission linewidth from 500 kHz down to less than 1 kHz, a value close to the laser intrinsic linewidth. The same narrowing performance can be achieved by the second technique, relying on phase locking the QCL to a narrow-linewidth radiation generated by a difference-frequency (DFG) process in a periodically-poled LiNbO3 non-linear crystal [3]. The experimental setup, depicted in in Fig. 1 has two main parts: the beat-note detection between QCL and DFG for the phase-locking and the detection of the saturated-absorption spectroscopy signal for the absolute frequency measurement of CO2 transitions. This DFG source is absolutely referenced to the Cs primary frequency standard through a visible/near-IR optical
frequency-comb synthesizer (OFCS), acting as a transfer oscillator across the 70-THz gap between the “pump” and “signal” lasers generating the “idler” mid-IR radiation.

The importance in narrowing and absolutely referencing the radiation emitted by QCLs lies in the possibility to perform spectroscopic analysis with increasing resolution, accuracy and sensitivity. In fact, QCLs are nowadays the most compact electrically driven devices capable of emitting coherent radiation in mid and far IR with appreciable power (from mW to W). The phase-locking technique has been already applied to saturated-absorption Lamb-dip spectroscopy of CO$_2$ ro-vibrational transitions at 4.3 μm, whose line-center frequencies have been measured with few kHz uncertainty [4]. Fig. 2 shows one of the measured transitions. The fit is a Lorentzian function corrected both for

![Lamb-dip spectroscopy](image)

Fig. 2. Lamb-dip recording of the P(34)f line at 2306.6108 cm$^{-1}$ at 12 Pa and 295 K.

a linear amplitude modulation (as the QCL frequency is scanned by ramping its driving current) and a background signal of the lock-in amplifier.

We have also proposed the frequency-locking technique of the QCL for replacing a complex OFCS-referenced intra-cavity DFG source used for optical radiocarbon detection based on saturated-absorption cavity ring-down (SCAR) with a much simpler and compact source [5]. The subkilohertz narrowing is crucial for coupling the QCL radiation to a high-finesse cavity with about 10 kHz resonance width, while the frequency lock to a molecular transition further simplifies the SCAR experimental setup, removing any need for the OFCS reference.

References