ABSTRACT

Current rescue therapies for life-threatening arrhythmias ignore the pathological electrophysiological substrate and base their efficacy on a generalized electrical discharge. Here, we developed an optovolt platform to examine less invasive defibrillation strategies. A strabismus-field microscope was developed to optically map action potential propagation with a multimodal voltage sensitive dye in whole mouse hearts. The macroscope was implemented with a random-access scanning head capable of drawing arbitrary-shown stimulation patterns with submillisecond temporal resolution allowing precise epipolar activation of Channelrhodopsin2 (CH2D28). We employed this optical system in the setting of ventricular tachycardia to optimize mechanistic-based, multi-barrier defibrillation patterns. Multiple regions of conduction block were created with a very high cardioversion efficiency but with lower energy requirements as compared to whole ventricular interventions to interrupt arrhythmias. This work demonstrates that defibrillation patterns can be substantially reduced by applying discrete stimulation patterns and promotes the progress of current anti-arrhythmic strategies.

Simultaneous all-optical map and control of cardiac electrical activity in mouse whole hearts.

Claudia Crocini1,2, Cecilia Ferrantini3, Raffaele Coppini3, Marina Scardigli1, Ping Yan1, Leslie M. Loew2, Godfrey Smith4, Elisabetta Cerbai2, Corrado Poggesi2, Francesco S. Pavone2,1,7, and Leonardo Sacconi1,2

1European Laboratory for Non-Linear Spectroscopy, Florence, Italy; 2National Institute of Optics, National Research Council, Florence, Italy; 3Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Italy; 4Division of Pharmacology, Department of “NeuroFarBa,” University of Florence, Italy; 5R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, U.S.A.; 6Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK; 7Department of Physics and Astronomy, University of Florence, Italy.

Optogenetics Design of Mechanistic-Based Stimulation Patterns for Cardiac Defibrillation

Characterization of Cardiac Response to ChR2 Activation

Customized Pattern Design for Interruption of Ventricular Tachycardia

Contacts: Claudia Crocini (crocini@lens.unifi.it)

Lens: European Laboratory for Non-Linear Spectroscopy
Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
Phone: +39 055 450 2371/2319, Fax: +39 055 437 4051
E-mail: info@lens.unifi.it

Website: http://www.lens.unifi.it

습관적인 패턴 디자인에 의한 전구형 탕마혈관의 중단